Inversion of Monic Polynomials and Existence of Unimodular Elements.
In the first section, we introduce the notions of fractional and invertible ideals of semirings and characterize invertible ideals of a semidomain. In section two, we define Prüfer semirings and characterize them in terms of valuation semirings. In this section, we also characterize Prüfer semirings in terms of some identities over its ideals such as for all ideals , of . In the third section, we give a semiring version for the Gilmer-Tsang Theorem, which states that for a suitable family...
Let be a one-dimensional analytically irreducible ring and let be an integral ideal of . We study the relation between the irreducibility of the ideal in and the irreducibility of the corresponding semigroup ideal . It turns out that if is irreducible, then is irreducible, but the converse does not hold in general. We collect some known results taken from [5], [4], [3] to obtain this result, which is new. We finally give an algorithm to compute the components of an irredundant decomposition...
We prove that an irreducible polynomial derivation in positive characteristic is a Jacobian derivation if and only if there exists an (n-1)-element p-basis of its ring of constants. In the case of two variables we characterize these derivations in terms of their divergence and some nontrivial constants.
We describe the isolated points of an arbitrary topological space . If the -specialization pre-order on has enough maximal elements, then a point is an isolated point in if and only if is both an isolated point in the subspaces of -kerneled points of and in the -closure of (a special case of this result is proved in Mehrvarz A.A., Samei K., On commutative Gelfand rings, J. Sci. Islam. Repub. Iran 10 (1999), no. 3, 193–196). This result is applied to an arbitrary subspace of the prime...
Sia un anello di caratteristica diseguale. Si stabiliscono formule generali per gli endomorfismi di una differenziazione o -iterativa di , con non zerodivisore di R. Tali formule sono note nel caso della caratteristica eguale.