Isomorphims between complexes with applications to the homological theory of modules.
Sia un anello di caratteristica diseguale. Si stabiliscono formule generali per gli endomorfismi di una differenziazione o -iterativa di , con non zerodivisore di R. Tali formule sono note nel caso della caratteristica eguale.
We prove that among counterexamples to the Jacobian Conjecture, if there are any, we can find one of lowest degree, the coordinates of which have the form + terms of degree < m+n.
Let be a commutative Noetherian ring. It is shown that the finitely generated -module with finite Gorenstein dimension is reflexive if and only if is reflexive for with , and for with . This gives a generalization of Serre and Samuel’s results on reflexive modules over a regular local ring and a generalization of a recent result due to Belshoff. In addition, for we give a characterization of -Gorenstein rings via Gorenstein dimension of the dual of modules. Finally it is shown...