Local cohomology, d-sequences and generalized fractions
We describe all Kadison algebras of the form , where k is an algebraically closed field and S is a multiplicative subset of k[t]. We also describe all Kadison algebras of the form k[t]/I, where k is a field of characteristic zero.
We give a description of all local derivations (in the Kadison sense) in the polynomial ring in one variable in characteristic two. Moreover, we describe all local derivations in the power series ring in one variable in any characteristic.
Suppose that are regular local rings which are essentially of finite type over a field of characteristic zero. If is a valuation ring of the quotient field of which dominates , then we show that there are sequences of monoidal transforms (blow ups of regular primes) and along such that is a monomial mapping. It follows that a morphism of nonsingular varieties can be made to be a monomial mapping along a valuation, after blow ups of nonsingular subvarieties.
Let A be a Noetherian ring, let M be a finitely generated A-module and let Φ be a system of ideals of A. We prove that, for any ideal in Φ, if, for every prime ideal of A, there exists an integer k(), depending on , such that kills the general local cohomology module for every integer j less than a fixed integer n, where , then there exists an integer k such that for every j < n.
Sia un anello compatto e sia un -modulo localmente compatto. Le dimostrazioni note che è linearmente topologizzato sembrano alquanto involute ed usano risultati profondi della teoria dei gruppi Abeliani localmente compatti nonché il Teorema di Kaplansky che asserisce che è linearmente topologizzato. In questa Nota, poggiando sul Teorema di Peter-Weyl, viene esposta una dimostrazione semplice e diretta, della quale il Teorema di Kaplansky è corollario.
We give a new proof of Miyanishi's theorem on the classification of the additive group scheme actions on the affine plane.
We prove that every locally nilpotent monomial k-derivation of k[X₁,...,Xₙ] is triangular, whenever k is a ring of characteristic zero. A method of testing monomial k-derivations for local nilpotency is also presented.
We prove that an associated graded algebra of a finite dimensional algebra is (= selfinjective) if and only if is and Loewy coincident. Here is said to be Loewy coincident if, for every primitive idempotent , the upper Loewy series and the lower Loewy series of and coincide. -3 algebras are an important generalization of algebras; note that Auslander algebras form a special class of these algebras. We prove that for a Loewy coincident algebra , the associated graded algebra...