The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 141 –
160 of
389
Let be a valued field, where is a rank one discrete valuation. Let be its ring of valuation, its maximal ideal, and an extension of , defined by a monic irreducible polynomial . Assume that factors as a product of distinct powers of monic irreducible polynomials. In this paper a condition which guarantees the existence of exactly distinct valuations of extending is given, in such a way that it generalizes the results given in the paper “Prolongations of valuations to finite...
The purpose of this paper is to define a new numerical invariant of valuations centered in a regular two-dimensional regular local ring. For this, we define a sequence of non-negative rational numbers δν = {δν(j)}j ≥ 0 which is determined by the proximity relations of the successive quadratic transformations at the points determined by a valuation ν. This sequence is characterized by seven combinatorial properties, so that any sequence of non-negative rational numbers having the above properties...
The purpose of this paper is to present a new approach to the classification of indecomposable pseudo-prime multiplication modules over pullback of two local Dedekind domains. We extend the definitions and the results given by Ebrahimi Atani and Farzalipour (2009) to more general cases.
Let be a commutative ring with a nonzero identity. In this study, we present a new class of ideals lying properly between the class of -ideals and the class of -ideals. A proper ideal of is said to be a quasi -ideal if is an -ideal of Many examples and results are given to disclose the relations between this new concept and others that already exist, namely, the -ideals, the quasi primary ideals, the -ideals and the -ideals. Moreover, we use the quasi -ideals to characterize some...
We generalize some results on reconstructing sets to the case of ideals of 𝕜[X₁,...,Xₙ]. We show that reconstructing sets can be approximated by finite subsets having the property of reconstructing automorphisms of bounded degree.
We extend results on reconstructing a polynomial automorphism from its restriction to the coordinate hyperplanes to some wider class of algebraic surfaces. We show that the algorithm proposed by M. Kwieciński in [K2] and based on Gröbner bases works also for this class of surfaces.
Let k be a field of chracteristic p > 0. We describe all derivations of the polynomial algebra k[x,y], homogeneous with respect to a given weight vector, in particular all monomial derivations, with the ring of constants of the form , where .
Currently displaying 141 –
160 of
389