The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 201 – 220 of 237

Showing per page

Green functions, Segre numbers, and King’s formula

Mats Andersson, Elizabeth Wulcan (2014)

Annales de l’institut Fourier

Let 𝒥 be a coherent ideal sheaf on a complex manifold X with zero set Z , and let G be a plurisubharmonic function such that G = log | f | + 𝒪 ( 1 ) locally at Z , where f is a tuple of holomorphic functions that defines 𝒥 . We give a meaning to the Monge-Ampère products ( d d c G ) k for k = 0 , 1 , 2 , ... , and prove that the Lelong numbers of the currents M k 𝒥 : = 1 Z ( d d c G ) k at x coincide with the so-called Segre numbers of J at x , introduced independently by Tworzewski, Gaffney-Gassler, and Achilles-Manaresi. More generally, we show that M k 𝒥 satisfy a certain generalization...

Green's generic syzygy conjecture for curves of even genus lying on a K3 surface

Claire Voisin (2002)

Journal of the European Mathematical Society

We consider the generic Green conjecture on syzygies of a canonical curve, and particularly the following reformulation thereof: For a smooth projective curve C of genus g in characteristic 0, the condition Cliff C > l is equivalent to the fact that K g - l ' - 2 , 1 ( C , K C ) = 0 , l ' l . We propose a new approach, which allows up to prove this result for generic curves C of genus g ( C ) and gonality gon(C) in the range g ( C ) 3 + 1 gon(C) g ( C ) 2 + 1 .

Gromov–Witten invariants for mirror orbifolds of simple elliptic singularities

Ikuo Satake, Atsushi Takahashi (2011)

Annales de l’institut Fourier

We consider a mirror symmetry of simple elliptic singularities. In particular, we construct isomorphisms of Frobenius manifolds among the one from the Gromov–Witten theory of a weighted projective line, the one from the theory of primitive forms for a universal unfolding of a simple elliptic singularity and the one from the invariant theory for an elliptic Weyl group. As a consequence, we give a geometric interpretation of the Fourier coefficients of an eta product considered by K. Saito.

Group Schemes over artinian rings and Applications

Ioan Berbec (2009)

Annales de l’institut Fourier

Let n be a positive integer and A a complete characteristic zero discrete valuation ring with maximal ideal 𝔪 , absolute ramification index e < p - 1 and perfect residue field k of characteristic p > 2 . In this paper we classify smooth finite dimensional formal p -faithful groups over A n = A / 𝔪 n A , i.e. groups on which the “multiplication by p ” morphism is faithfully flat, in particular p -divisible groups. As applications, we prove that p -divisible groups over k , and the morphisms between them, lift canonically to A / p A , and...

Groupe de Brauer non ramifié d’espaces homogènes de tores

Jean-Louis Colliot-Thélène (2014)

Journal de Théorie des Nombres de Bordeaux

Soient k un corps et X une k -variété projective et lisse. Si X est géométriquement rationnelle, on dispose d’une application injective du quotient de groupes de Brauer Br ( X ) / Br ( k ) dans le premier groupe de cohomologie galoisienne du réseau défini par le groupe de Picard géométrique de X . Dans cette note on donne des cas où cette application est toujours surjective. Pour les espaces homogènes de certains tores algébriques, on donne des générateurs explicites dans Br ( X ) . On applique cela à l’étude du principe de...

Groupe de Picard des variétés de modules de faisceaux semi-stables sur 2 ( )

Jean-Marc Drezet (1988)

Annales de l'institut Fourier

Le sujet de cet article est le groupe de Picard de la variété de modules M ( r , c 1 , c 2 ) des faisceaux algébriques semi-stables de rang r et de classes de Chern c 1 , c 2 sur P 2 ( C ) . Le premier résultat est que M ( r , c 1 , c 2 ) est localement factorielle, ce qui permet d’identifier Pic ( M ( r , c 1 , c 2 ) ) et le groupe des classes d’équivalence linéaire des diviseurs de Weil de M ( r , c 1 , c 2 ) ) . Il existe une unique application δ : Q Q telle que dim ( M ( r , c 1 , c 2 ) ) > 0 si et seulement si ( c 2 - ( r - 1 ) c 1 2 / 2 r ) / r > δ ( c 1 / r ) . Si on a égalité, Pic ( M ( r , c 1 , c 2 ) ) est isomorphe à Z , et si l’inégalité est stricte, Pic ( M ( r , c 1 , c 2 ) ) est isomorphe à Z 2 . On donne ensuite...

Currently displaying 201 – 220 of 237