Displaying 281 – 300 of 325

Showing per page

Unique decomposition for a polynomial of low rank

Edoardo Ballico, Alessandra Bernardi (2013)

Annales Polonici Mathematici

Let F be a homogeneous polynomial of degree d in m + 1 variables defined over an algebraically closed field of characteristic 0 and suppose that F belongs to the sth secant variety of the d-uple Veronese embedding of m into m + d d - 1 but that its minimal decomposition as a sum of dth powers of linear forms requires more than s summands. We show that if s ≤ d then F can be uniquely written as F = M d + + M t d + Q , where M , . . . , M t are linear forms with t ≤ (d-1)/2, and Q is a binary form such that Q = i = 1 q l i d - d i m i with l i ’s linear forms and m i ’s forms...

Uniqueness of crepant resolutions and symplectic singularities

Baohua Fu, Yoshinori Namikawa (2004)

Annales de l’institut Fourier

We prove the uniqueness of crepant resolutions for some quotient singularities and for some nilpotent orbits. The finiteness of non-isomorphic symplectic resolutions for 4- dimensional symplectic singularities is proved. We also give an example of a symplectic singularity which admits two non-equivalent symplectic resolutions.

Uniqueness of equivariant singular Bott-Chern classes

Shun Tang (2012)

Annales de l’institut Fourier

In this paper, we shall discuss possible theories of defining equivariant singular Bott-Chern classes and corresponding uniqueness property. By adding a natural axiomatic characterization to the usual ones of equivariant Bott-Chern secondary characteristic classes, we will see that the construction of Bismut’s equivariant Bott-Chern singular currents provides a unique way to define a theory of equivariant singular Bott-Chern classes. This generalizes J. I. Burgos Gil and R. Liţcanu’s discussion...

Uniqueness properties for spherical varieties

Ivan Losev (2010)

Les cours du CIRM

The goal of these lectures is to explain speaker’s results on uniqueness properties of spherical varieties. By a uniqueness property we mean the following. Consider some special class of spherical varieties. Define some combinatorial invariants for spherical varieties from this class. The problem is to determine whether this set of invariants specifies a spherical variety in this class uniquely (up to an isomorphism). We are interested in three classes: smooth affine varieties, general affine varieties,...

Unirational quartic hypersurfaces

Marina Rosanna Marchisio (2000)

Bollettino dell'Unione Matematica Italiana

Dopo aver ricordato i principali risultati concernenti l'unirazionalità dell'ipersuperficie quartica generale X 4 di P n (definita su un corpo K qualsiasi) si illustra la costruzione geometrica che permette di provare l'esistenza di una superficie razionale in ogni X 4 di P n , con n 4 , e di trovare altri esempi di ipersuperficie quartiche lisce che sono unirazionali oltre a quello dato da B. Segre nel 1960. Si mostra poi come l'analisi delle superficie quartiche monoidali (cioè contenenti un punto triplo...

Unités elliptiques et groupes de classes

Mohamed Charkani El Hassani, Roland Gillard (1986)

Annales de l'institut Fourier

Nous étudions les extensions abéliennes d’un corps quadratique imaginaire et discutons les analogues des théorèmes de Mazur et Wiles.

Unités relatives

Roger Paysant-Le Roux (1985/1986)

Groupe d'étude en théorie analytique des nombres

Currently displaying 281 – 300 of 325