The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We consider four approaches to relative Gromov–Witten theory and Gromov–Witten theory of degenerations: J. Li’s original approach, B. Kim’s logarithmic expansions, Abramovich–Fantechi’s orbifold expansions, and a logarithmic theory without expansions due to Gross–Siebert and Abramovich–Chen. We exhibit morphisms relating these moduli spaces and prove that their virtual fundamental classes are compatible by pushforward through these morphisms. This implies that the Gromov–Witten invariants associated...
Nous déduisons de la formule du conducteur, conjecturée par S. Bloch, celle de P. Deligne
exprimant, dans le cas d'une singularité isolée, la dimension totale des cycles
évanescents en fonction du nombre de Milnor. En particulier, la formule de Deligne est
établie en dimension relative un; en appendice, on généralise cet énoncé au cas d'un lieu
singulier propre.
Soit une variété homogène sous un groupe . Nous étudions les orbites maximales de
sous l’action d’un parabolique de . Nous les décomposons en fibrations affines et
projectives. Cette description permet de montrer que le schéma de Hilbert des courbes
rationnelles lisses de classe fixée est non vide et irréductible.
Currently displaying 1 –
3 of
3