The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We present some constructions of limits and colimits in pro-categories. These are critical tools in several applications. In particular, certain technical arguments concerning strict pro-maps are essential for a theorem about étale homotopy types. We also correct some mistakes in the literature on this topic.
We show that the natural morphism between the fundamental group scheme of the generic fiber of a scheme over a connected Dedekind scheme and the generic fiber of the fundamental group scheme of is always faithfully flat. As an application we give a necessary and sufficient condition for a finite, dominated pointed -torsor over to be extended over . We finally provide examples where is an isomorphism.
For a finitely generated group, we study the relations between its rank, the maximal rank of its free quotient, called co-rank (inner rank, cut number), and the maximal rank of its free abelian quotient, called the Betti number. We show that any combination of the group's rank, co-rank, and Betti number within obvious constraints is realized for some finitely presented group (for Betti number equal to rank, the group can be chosen torsion-free). In addition, we show that the Betti number is additive...
Currently displaying 1 –
6 of
6