The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 21 – 40 of 218

Showing per page

Classe de conjugaison du frobenius des variétés abéliennes à réduction ordinaire

Rutger Noot (1995)

Annales de l'institut Fourier

Soient X une variété abélienne sur un corps de nombres E et G son groupe de Mumford–Tate. Soit v une valuation de E et pour tout nombre premier tel que v ( ) = 0 , soit F G ( Q ) l’automorphisme de Frobenius (géométrique) de la cohomologie étale -adique de X . On montre que si X a une bonne réduction ordinaire en v , alors il existe F G ( Q ) tel que, pour tout , F soit conjugué à F dans G ( Q ) . On montre un résultat analogue pour le frobenius de la cohomologie cristalline de la réduction de X modulo v .

Currently displaying 21 – 40 of 218