The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 41 – 60 of 69

Showing per page

On the adjoint system to a very ample divisor on a surface and connected inequalities

Antonio Lanteri, Marino Palleschi (1981)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Siano: S una superficie algebrica proiettiva complessa non singolare, K un divisore canonico ed H un divisore molto ampio su S . Questo lavoro ha per oggetto lo studio dell'indice di autointersezione ( K + H ) 2 . Si dimostra, innanzitutto, la disuguaglianza ( K + H ) 2 0 , nell'ipotesi che la superficie S ottenuta immergendo S mediante il sistema lineare completo | H | non sia uno scroll. Questa disuguaglianza è connessa con alcuni risultati di Sommese e Van de Ven sulla generazione del fascio 𝒪 s ( K + H ) . La dimostrazione della (I)...

On the cohomological strata of families of vector bundles on algebraic surfaces

Edoardo Ballico (1991)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

In this Note we study certain natural subsets of the cohomological stratification of the moduli spaces of rank 2 vector bundles on an algebraic surface. In the last section we consider the following problem: take a bundle E given by an extension, how can one recognize that E is a certain given bundle? The most interesting case considered here is the case E = T P 3 t since it applies to the study of codimension 1 meromorphic foliations with singularities on P 3 .

On the genus of reducible surfaces and degenerations of surfaces

Alberto Calabri, Ciro Ciliberto, Flaminio Flamini, Rick Miranda (2007)

Annales de l’institut Fourier

We deal with a reducible projective surface X with so-called Zappatic singularities, which are a generalization of normal crossings. First we compute the ω -genus p ω ( X ) of X , i.e. the dimension of the vector space of global sections of the dualizing sheaf ω X . Then we prove that, when X is smoothable, i.e. when X is the central fibre of a flat family π : 𝒳 Δ parametrized by a disc, with smooth general fibre, then the ω -genus of the fibres of π is constant.

Currently displaying 41 – 60 of 69