The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
We study algebraic loop groups and affine Grassmannians in positive characteristic.
The main results are normality of Schubert-varieties, the construction of line-bundles on the affine Grassmannian, and the proof that they induce line-bundles on the moduli-stack of torsors.
We give examples of failure of the existence of co-fibered products in the category of algebraic curves.
Le théorème de Borel-Weil-Bott décrit la cohomologie des fibrés en droites sur les variétés de drapeaux. On généralise ici ce théorème à une plus grande classe de variétés projectives : les variétés magnifiques de rang minimal.
Let be a representation of a reductive linear algebraic group on a finite-dimensional vector space , defined over an algebraically closed field of characteristic zero. The categorical quotient carries a natural stratification, due to D. Luna. This paper addresses the following questions:(i) Is the Luna stratification of intrinsic? That is, does every automorphism of map each stratum to another stratum?(ii) Are the individual Luna strata in intrinsic? That is, does every automorphism...
Nous obtenons une version explicite de la théorie de Bruhat-Tits pour les groupes exceptionnels de type sur un corps local. Nous décrivons chaque construction concrètement en termes de réseaux : l’immeuble, les appartements, la structure simpliciale, les schémas en groupes associés. Les appendices traitent de l’analogie avec les espaces symétriques réels et des espaces symétriques associés à réel et complexe.
Nous obtenons une version explicite de la théorie de Bruhat-Tits pour les groupes exceptionnels des type ou sur un corps local. Nous décrivons chaque construction concrètement en termes de réseaux : l’immeuble, les appartements, la structure simpliciale, les schémas en groupes associés.
In this article we study interpolation estimates on a special class of compactifications of commutative algebraic groups constructed by Serre. We obtain a large quantitative improvement over previous results due to Masser and the first author and our main result has the same level of accuracy as the best known multiplicity estimates. The improvements come both from using special properties of the compactifications which we consider and from a different approach based upon Seshadri constants and...
Currently displaying 1 –
20 of
25