The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 261 – 280 of 456

Showing per page

A tensor approximation method based on ideal minimal residual formulations for the solution of high-dimensional problems

M. Billaud-Friess, A. Nouy, O. Zahm (2014)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

In this paper, we propose a method for the approximation of the solution of high-dimensional weakly coercive problems formulated in tensor spaces using low-rank approximation formats. The method can be seen as a perturbation of a minimal residual method with a measure of the residual corresponding to the error in a specified solution norm. The residual norm can be designed such that the resulting low-rank approximations are optimal with respect to particular norms of interest, thus allowing to take...

A topology over a set of systems

Gaspar Martínez Mora (1996)

Revista de la Real Academia de Ciencias Exactas Físicas y Naturales

The systems of an arbitrary number of linear inequalities OVer a real locally convex space have been classified in three classes, namely: consistent, weakly inconsistent and strongly inconsistent, i.e. having ordinary solutions, weak solutions or notsolutions respectively. In this paper, the third type is divided in two classes: strict-strongly and quasi-strongly inconsistent and is given a topology over a quotient space of the set of systems over finite- dimensional spaces, that yields a set of...

A transvection decomposition in GL(n,2)

Clorinda De Vivo, Claudia Metelli (2002)

Colloquium Mathematicae

An algorithm is given to decompose an automorphism of a finite vector space over ℤ₂ into a product of transvections. The procedure uses partitions of the indexing set of a redundant base. With respect to tents, i.e. finite ℤ₂-representations generated by a redundant base, this is a decomposition into base changes.

A treatment of a determinant inequality of Fiedler and Markham

Minghua Lin (2016)

Czechoslovak Mathematical Journal

Fiedler and Markham (1994) proved det H ^ k k det H , where H = ( H i j ) i , j = 1 n is a positive semidefinite matrix partitioned into n × n blocks with each block k × k and H ^ = ( tr H i j ) i , j = 1 n . We revisit this inequality mainly using some terminology from quantum information theory. Analogous results are included. For example, under the same condition, we prove det ( I n + H ^ ) det ( I n k + k H ) 1 / k .

A tutorial on conformal groups

Ian Porteous (1996)

Banach Center Publications

Our concern is with the group of conformal transformations of a finite-dimensional real quadratic space of signature (p,q), that is one that is isomorphic to p , q , the real vector space p + q , furnished with the quadratic form x ( 2 ) = x · x = - x 1 2 - x 2 2 - . . . - x p 2 + x p + 1 2 + . . . + x p + q 2 , and especially with a description of this group that involves Clifford algebras.

A variant of the reciprocal super Catalan matrix

Emrah Kılıç, Ilker Akkus, Gonca Kızılaslan (2015)

Special Matrices

Recently Prodinger [8] considered the reciprocal super Catalan matrix and gave explicit formulæ for its LU-decomposition, the LU-decomposition of its inverse, and obtained some related matrices. For all results, q-analogues were also presented. In this paper, we define and study a variant of the reciprocal super Catalan matrix with two additional parameters. Explicit formulæ for its LU-decomposition, LUdecomposition of its inverse and the Cholesky decomposition are obtained. For all results, q-analogues...

A well-conditioned integral equation for iterative solution of scattering problems with a variable Leontovitch boundary condition

Sébastien Pernet (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

The construction of a well-conditioned integral equation for iterative solution of scattering problems with a variable Leontovitch boundary condition is proposed. A suitable parametrix is obtained by using a new unknown and an approximation of the transparency condition. We prove the well-posedness of the equation for any wavenumber. Finally, some numerical comparisons with well-tried method prove the efficiency of the new formulation.

Abelian differential modes are quasi-affine

David Stanovský (2012)

Commentationes Mathematicae Universitatis Carolinae

We study a class of strongly solvable modes, called differential modes. We characterize abelian algebras in this class and prove that all of them are quasi-affine, i.e., they are subreducts of modules over commutative rings.

Currently displaying 261 – 280 of 456