Sur deux classes d'anneaux
Une construction explicite et élémentaire de l’homomorphisme trace pour les applications analytiques locales de type fini entre des espaces normaux est donnée. On généralise le théorème de dualité locale dans le cas où l’anneau local à la source est un anneau de factorisation unique. Des exemples et des applications sont donnés.
Afin de disposer des opérations cohomologiques aussi souples que possible pour la cohomologie de de Rham -adique, le but principal de ce mémoire est de résoudre intrinsèquement du point de vue cohomologique le problème des relèvements des schémas lisses et de leurs morphismes de la caractéristique à la caractéristique nulle ce qui a été l’une des difficultés centrales de la théorie de la cohomologie de de Rham des schémas algébriques en caractéristique positive depuis le début. Nous montrons...
Soient (resp. ) l’anneau des germes de fonctions de Nash (resp. l’anneau des germes de fonctions ) à l’origine de : (resp. ) le module sur des germes de fonctions de Bernstein (resp. le module sur des germes de distributions de Bernstein) à l’origine de . Les deux résultats principaux de l’article sont les suivants : est un module injectif sur et est un module plat sur .