The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 1321 –
1340 of
3997
We study whether the projective and injective properties of left -modules can be implied to the special kind of left -modules, especially to the case of inverse polynomial modules and Laurent polynomial modules.
We generalize the results by G.V. Triantafillou and B. Fine on -disconnected simplicial sets. An existence of an injective minimal model for a complete -algebra is presented, for any -category . We then make use of the -category associated with a -simplicial set to apply these results to the category of -simplicial sets.Finally, we describe the rational homotopy type of a nilpotent -simplicial set by means of its injective minimal model.
These notes are intended to provide a self-contained introduction to the basic ideas of finite dimensional Batalin-Vilkovisky (BV) formalism and its applications. A brief exposition of super- and graded geometries is also given. The BV–formalism is introduced through an odd Fourier transform and the algebraic aspects of integration theory are stressed. As a main application we consider the perturbation theory for certain finite dimensional integrals within BV-formalism. As an illustration we present...
Let be a complex, semisimple Lie algebra, with an involutive automorphism and set , . We consider the differential operators, , on that are invariant under the action of the adjoint group of . Write for the differential of this action. Then we prove, for the class of symmetric pairs considered by Sekiguchi, that . An immediate consequence of this equality is the following result of Sekiguchi: Let be a real form of one of these symmetric pairs , and suppose that is a -invariant...
We prove a series of "going-up" theorems contrasting the structure of semiprime algebras and their subalgebras of invariants under the actions of Lie color algebras.
The half-liberated orthogonal group appears as intermediate quantum group between the orthogonal group , and its free version . We discuss here its basic algebraic properties, and we classify its irreducible representations. The classification of representations is done by using a certain twisting-type relation between and , a non abelian discrete group playing the role of weight lattice, and a number of methods inspired from the theory of Lie algebras. We use these results for showing that...
2000 Mathematics Subject Classification: 16R10, 16R30.The classical theorem of Weitzenböck states that the algebra of invariants K[X]^g of a single unipotent transformation g ∈ GLm(K) acting on the polynomial algebra K[X] = K[x1, . . . , xm] over a field K of characteristic 0 is finitely generated.Partially supported by Grant MM-1106/2001 of the Bulgarian National Science Fund.
Currently displaying 1321 –
1340 of
3997