The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 2081 – 2100 of 2676

Showing per page

Weitzenböck Formula on Lie Algebroids

Bogdan Balcerzak, Jerzy Kalina, Antoni Pierzchalski (2012)

Bulletin of the Polish Academy of Sciences. Mathematics

A Weitzenböck formula for the Laplace-Beltrami operator acting on differential forms on Lie algebroids is derived.

When is a quantum space not a group?

Piotr Mikołaj Sołtan (2010)

Banach Center Publications

We give a survey of techniques from quantum group theory which can be used to show that some quantum spaces (objects of the category dual to the category of C*-algebras) do not admit any quantum group structure. We also provide a number of examples which include some very well known quantum spaces. Our tools include several purely quantum group theoretical results as well as study of existence of characters and traces on C*-algebras describing the considered quantum spaces as well as properties...

When is a Riesz distribution a complex measure?

Alan D. Sokal (2011)

Bulletin de la Société Mathématique de France

Let α be the Riesz distribution on a simple Euclidean Jordan algebra, parametrized by α . I give an elementary proof of the necessary and sufficient condition for α to be a locally finite complex measure (= complex Radon measure).

Why Jordan algebras are natural in statistics: quadratic regression implies Wishart distributions

G. Letac, J. Wesołowski (2011)

Bulletin de la Société Mathématique de France

If the space 𝒬 of quadratic forms in n is splitted in a direct sum 𝒬 1 ... 𝒬 k and if X and Y are independent random variables of n , assume that there exist a real number a such that E ( X | X + Y ) = a ( X + Y ) and real distinct numbers b 1 , . . . , b k such that E ( q ( X ) | X + Y ) = b i q ( X + Y ) for any q in 𝒬 i . We prove that this happens only when k = 2 , when n can be structured in a Euclidean Jordan algebra and when X and Y have Wishart distributions corresponding to this structure.

Witt algebra and the curvature of the Heisenberg group

Zoltán Muzsnay, Péter T. Nagy (2012)

Communications in Mathematics

The aim of this paper is to determine explicitly the algebraic structure of the curvature algebra of the 3-dimensional Heisenberg group with left invariant cubic metric. We show, that this curvature algebra is an infinite dimensional graded Lie subalgebra of the generalized Witt algebra of homogeneous vector fields generated by three elements.

Zeta functions of Jordan algebras representations

Dehbia Achab (1995)

Annales de l'institut Fourier

This work is about a generalization of Kœcher’s zeta function. Let V be an Euclidean simple Jordan algebra of dimension n and rank m , E an Euclidean space of dimension N , ϕ a regular self-adjoint representation of V in E , Q the quadratic form associated to ϕ , Ω the symmetric cone associated to V and G ( Ω ) its automorphism group G ( Ω ) = { g G L ( V ) | g ( Ω ) = Ω } . ( H 1 ) Assume that V and E have Q -structures V Q and E Q respectively and ϕ is defined over Q . Let L be a lattice in E Q . The zeta series associated to ϕ and L is defined by ζ L ( s ) = l Γ L ' [ det ( Q ( l ) ) ] - s , s C where L ' = { l L | det ( Q ( l ) ) 0 } ,...

Currently displaying 2081 – 2100 of 2676