The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 201 –
220 of
2676
The smoothing-type algorithm is a powerful tool for solving the second-order cone programming (SOCP), which is in general designed based on a monotone line search. In this paper, we propose a smoothing-type algorithm for solving the SOCP with a non-monotone line search. By using the theory of Euclidean Jordan algebras, we prove that the proposed algorithm is globally and locally quadratically convergent under suitable assumptions. The preliminary numerical results are also reported which indicate...
We introduce the concept of analytic spectral radius for a family of operators indexed by some finite measure space. This spectral radius is compared with the algebraic and geometric spectral radii when the operators belong to some finite-dimensional solvable Lie algebra. We describe several situations when the three spectral radii coincide. These results extend well known facts concerning commuting n-tuples of operators.
For Banach Jordan algebras and pairs the spectrum is proved to be related to the spectrum in a Banach algebra. Consequently, it is an analytic multifunction, upper semicontinuous with a dense G delta-set of points of continuity, and the scarcity theorem holds.
Binary operations on commutative Jordan algebras are used to carry out the ANOVA of a two layer model. The treatments in the first layer nests those in the second layer, that being a sub-model for each treatment in the first layer. We present an application with data retried from agricultural experiments.
Nous tentons, dans ce survol, de présenter une structure méconnue : l'algèbre de Lie ARI et son groupe GARI. Puis nous montrons quels progrès elle a déjà permis de réaliser dans l'étude arithmético-algébrique des valeurs zêta multiples et aussi quelles possibilités elle ouvre pour l'exploration du phénomène plus général de /emph{dimorphie numérique}.
Considering a Poisson algebra as a nonassociative algebra satisfying the Markl-Remm identity, we study deformations of Poisson algebras as deformations of this nonassociative algebra. We give a natural interpretation of deformations which preserve the underlying associative structure and of deformations which preserve the underlying Lie algebra and we compare the associated cohomologies with the Poisson cohomology parametrizing the general deformations of Poisson algebras.
Currently displaying 201 –
220 of
2676