The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 321 – 340 of 2676

Showing per page

Classification of irreducible weight modules

Olivier Mathieu (2000)

Annales de l'institut Fourier

Let 𝔤 be a reductive Lie algebra and let 𝔥 be a Cartan subalgebra. A 𝔤 -module M is called a weighted module if and only if M = λ M λ , where each weight space M λ is finite dimensional. The main result of the paper is the classification of all simple weight 𝔤 -modules. Further, we show that their characters can be deduced from characters of simple modules in category 𝒪 .

Classification of p-adic 6-dimensional filiform Leibniz algebras by solutions of x q = a

Manuel Ladra, Bakhrom Omirov, Utkir Rozikov (2013)

Open Mathematics

We study the p-adic equation x q = a over the field of p-adic numbers. We construct an algorithm which gives a solvability criteria in the case of q = p m and present a computer program to compute the criteria for any fixed value of m ≤ p − 1. Moreover, using this solvability criteria for q = 2; 3; 4; 5; 6, we classify p-adic 6-dimensional filiform Leibniz algebras.

Clifford approach to metric manifolds

Chisholm, J. S. R., Farwell, R. S. (1991)

Proceedings of the Winter School "Geometry and Physics"

[For the entire collection see Zbl 0742.00067.]For the purpose of providing a comprehensive model for the physical world, the authors set up the notion of a Clifford manifold which, as mentioned below, admits the usual tensor structure and at the same time a spin structure. One considers the spin space generated by a Clifford algebra, namely, the vector space spanned by an orthonormal basis { e j : j = 1 , , n } satisfying the condition { e i , e j } e i e j = e j e i = 2 I η i j , where I denotes the unit scalar of the algebra and ( η i j ) the nonsingular Minkowski...

Coalgebraic Approach to the Loday Infinity Category, Stem Differential for 2 n -ary Graded and Homotopy Algebras

Mourad Ammar, Norbert Poncin (2010)

Annales de l’institut Fourier

We define a graded twisted-coassociative coproduct on the tensor algebra the desuspension space of a graded vector space V . The coderivations (resp. quadratic “degree 1” codifferentials, arbitrary odd codifferentials) of this coalgebra are 1-to-1 with sequences of multilinear maps on V (resp. graded Loday structures on V , sequences that we call Loday infinity structures on V ). We prove a minimal model theorem for Loday infinity algebras and observe that the Lod category contains the L category as...

Cohomologie des algèbres de Lie croisées et K -théorie de Milnor additive

Daniel Guin (1995)

Annales de l'institut Fourier

Dans cet article, nous définissons des modules de (co)-homologie 0 ( 𝔊 , 𝔄 ) , 1 ( 𝔊 , 𝔄 ) , ( 𝔊 , 𝔄 ) , 1 ( 𝔊 , 𝔄 ) 𝔊 et 𝔄 sont des algèbres de Lie munies d’une structure supplémentaire (algèbres de Lie croisées), qui satisfont les propriétés usuelles des foncteurs cohomologiques. Si A est une k -algèbre, nous utilisons ces modules d’homologie pour comparer le groupe d’homologie cyclique H C 1 ( A ) avec un analogue additif du groupe de K -théorie de Milnor K 2 Madd ( A ) .

Currently displaying 321 – 340 of 2676