The search session has expired. Please query the service again.
We use the computational power of rational homotopy theory to provide an explicit cochain model for the loop product and the string bracket of a simply connected closed manifold .
We prove that the loop homology of is isomorphic to the Hochschild cohomology of the cochain algebra with coefficients in . Some explicit computations of the loop product and
the string bracket are given.
The category of all modules over a reductive complex Lie algebra is wild, and therefore it is useful to study full subcategories. For instance, Bernstein, Gelfand and Gelfand introduced a category of modules which provides a natural setting for highest weight modules. In this paper, we define a family of categories which generalizes the BGG category, and we classify the simple modules for a subfamily. As a consequence, we show that some of the obtained categories are semisimple.
Currently displaying 1 –
3 of
3