Displaying 1441 – 1460 of 3013

Showing per page

Le module dendriforme sur le groupe cyclique

Frédéric Chapoton (2008)

Annales de l’institut Fourier

La structure d’opérade anticyclique de l’opérade dendriforme donne en particulier une matrice d’ordre n agissant sur l’espace engendré par les arbres binaires plans à n feuilles. On calcule le polynôme caractéristique de cette matrice. On propose aussi une conjecture compatible pour le polynôme caractéristique de la transformation de Coxeter du poset de Tamari, qui est essentiellement une racine carrée de cette matrice.

Left-Garside categories, self-distributivity, and braids

Patrick Dehornoy (2009)

Annales mathématiques Blaise Pascal

In connection with the emerging theory of Garside categories, we develop the notions of a left-Garside category and of a locally left-Garside monoid. In this framework, the relationship between the self-distributivity law LD and braids amounts to the result that a certain category associated with LD is a left-Garside category, which projects onto the standard Garside category of braids. This approach leads to a realistic program for establishing the Embedding Conjecture of [Dehornoy, Braids and...

Left-right noncommutative Poisson algebras

José Casas, Tamar Datuashvili, Manuel Ladra (2014)

Open Mathematics

The notions of left-right noncommutative Poisson algebra (NPlr-algebra) and left-right algebra with bracket AWBlr are introduced. These algebras are special cases of NLP-algebras and algebras with bracket AWB, respectively, studied earlier. An NPlr-algebra is a noncommutative analogue of the classical Poisson algebra. Properties of these new algebras are studied. In the categories AWBlr and NPlr-algebras the notions of actions, representations, centers, actors and crossed modules are described as...

Les ( a , b ) -algèbres à homotopie près

Walid Aloulou (2010)

Annales mathématiques Blaise Pascal

On étudie dans cet article les notions d’algèbre à homotopie près pour une structure définie par deux opérations . et [ , ] . Ayant déterminé la structure des G algèbres et des P algèbres, on généralise cette construction et on définit la stucture des ( a , b ) -algèbres à homotopie près. Etant donnée une structure d’algèbre commutative et de Lie différentielle graduée pour deux décalages des degrés donnés par a et b , on donnera une construction explicite de l’algèbre à homotopie près associée et on précisera...

Les motifs de Tate et les opérateurs de périodicité de Connes

Abhishek Banerjee (2014)

Annales mathématiques Blaise Pascal

Dans cet article, nous définissons une catégorie M o t ˜ C des motifs sur une catégorie monoïdale symétrique ( C , , 1 ) vérifiant certaines hypothèses. Le rôle des espaces sur ( C , , 1 ) est joué par les monoïdes (non necessairement commutatifs) dans C . Pour définir les morphismes dans M o t ˜ C , nous utilisons des classes dans les groupes d’homologie cyclique bivariante. Le but est de montrer que les opérateurs de périodicité de Connes induisent des morphismes M 𝕋 2 M dans M o t ˜ C , où 𝕋 est le motif de Tate dans M o t ˜ C .

Currently displaying 1441 – 1460 of 3013