The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 21 – 40 of 64

Showing per page

The Hochschild cohomology of a closed manifold

Yves Felix, Jean-Claude Thomas, Micheline Vigué-Poirrier (2004)

Publications Mathématiques de l'IHÉS

Let M be a closed orientable manifold of dimension dand 𝒞 * ( M ) be the usual cochain algebra on M with coefficients in a fieldk. The Hochschild cohomology of M, H H * ( 𝒞 * ( M ) ; 𝒞 * ( M ) ) is a graded commutative and associative algebra. The augmentation map ε : 𝒞 * ( M ) 𝑘 induces a morphism of algebras I : H H * ( 𝒞 * ( M ) ; 𝒞 * ( M ) ) H H * ( 𝒞 * ( M ) ; 𝑘 ) . In this paper we produce a chain model for the morphism I. We show that the kernel of I is a nilpotent ideal and that the image of I is contained in the center of H H * ( 𝒞 * ( M ) ; 𝑘 ) , which is in general quite small. The algebra H H * ( 𝒞 * ( M ) ; 𝒞 * ( M ) ) is expected to be isomorphic...

The image of the natural homomorphism of Witt rings of orders in a global field

Beata Rothkegel (2013)

Acta Arithmetica

Let R be a Dedekind domain whose field of fractions is a global field. Moreover, let 𝓞 < R be an order. We examine the image of the natural homomorphism φ : W𝓞 → WR of the corresponding Witt rings. We formulate necessary and sufficient conditions for the surjectivity of φ in the case of all nonreal quadratic number fields, all real quadratic number fields K such that -1 is a norm in the extension K/ℚ, and all quadratic function fields.

The Novikov conjecture for linear groups

Erik Guentner, Nigel Higson, Shmuel Weinberger (2005)

Publications Mathématiques de l'IHÉS

Let K be a field. We show that every countable subgroup of GL(n,K) is uniformly embeddable in a Hilbert space. This implies that Novikov’s higher signature conjecture holds for these groups. We also show that every countable subgroup of GL(2,K) admits a proper, affine isometric action on a Hilbert space. This implies that the Baum-Connes conjecture holds for these groups. Finally, we show that every subgroup of GL(n,K) is exact, in the sense of C*-algebra theory.

The Roquette category of finite p -groups

Serge Bouc (2015)

Journal of the European Mathematical Society

Let p be a prime number. This paper introduces the Roquette category p of finite p -groups, which is an additive tensor category containing all finite p -groups among its objects. In p , every finite p -group P admits a canonical direct summand P , called the edge of P . Moreover P splits uniquely as a direct sum of edges of Roquette p -groups, and the tensor structure of p can be described in terms of such edges. The main motivation for considering this category is that the additive functors from p to...

Currently displaying 21 – 40 of 64