The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
It is shown that the proof by Mehta and Parameswaran of Wahl’s conjecture for Grassmannians in positive odd characteristics also works for symplectic and orthogonal Grassmannians.
Let R be a perfect commutative unital ring without zero divisors of char(R) = p and let G be a multiplicative abelian group. Then the Warfield p-invariants of the normed unit group V (RG) are computed only in terms of R and G. These cardinal-to-ordinal functions, combined with the Ulm-Kaplansky p-invariants, completely determine the structure of V (RG) whenever G is a Warfield p-mixed group.
In an earlier paper, the authors showed that standard semigroups , and play an important role in the classification of weaker versions of alg-universality of semigroup varieties. This paper shows that quasivarieties generated by and are neither relatively alg-universal nor -universal, while there do exist finite semigroups and generating the same semigroup variety as and respectively and the quasivarieties generated by and/or are quasivar-relatively -alg-universal and -universal...
Let be an associative algebra over a field generated by a vector subspace . The polynomial of the free associative algebra is a weak polynomial identity for the pair if it vanishes in when evaluated on . We survey results on weak polynomial identities and on their applications to polynomial identities and central polynomials of associative and close to them nonassociative algebras and on the finite basis problem. We also present results on weak polynomial identities of degree three....
A singularity is said to be weakly-exceptional if it has a unique purely log terminal blow-up. In dimension 2, V. Shokurov proved that weakly-exceptional quotient singularities are exactly those of types D n, E 6, E 7, E 8. This paper classifies the weakly-exceptional quotient singularities in dimensions 3 and 4.
2000 Mathematics Subject Classification: Primary 14H55; Secondary 14H30, 14H40, 20M14.Let H be a 4-semigroup, i.e., a numerical semigroup whose
minimum positive element is four. We denote by 4r(H) + 2 the minimum
element of H which is congruent to 2 modulo 4. If the genus g of H is
larger than 3r(H) − 1, then there is a cyclic covering π : C −→ P^1
of curves with degree 4 and its ramification point P such that the Weierstrass
semigroup H(P) of P is H (Komeda [1]). In this paper it is showed that...
Currently displaying 1 –
20 of
53