Displaying 221 – 240 of 260

Showing per page

Isometries of systolic spaces

Tomasz Elsner (2009)

Fundamenta Mathematicae

We provide a classification of isometries of systolic complexes corresponding to the classification of isometries of CAT(0)-spaces. We prove that any isometry of a systolic complex either fixes the barycentre of some simplex (elliptic case) or stabilizes a thick geodesic (hyperbolic case). This leads to an alternative proof of the fact that finitely generated abelian subgroups of systolic groups are undistorted.

Isometry groups of non standard metric products

Bogdana Oliynyk (2013)

Open Mathematics

We consider isometry groups of a fairly general class of non standard products of metric spaces. We present sufficient conditions under which the isometry group of a non standard product of metric spaces splits as a permutation group into direct or wreath product of isometry groups of some metric spaces.

Isomorphism of commutative group algebras of p -mixed splitting groups over rings of characteristic zero

Peter Vassilev Danchev (2006)

Mathematica Bohemica

Suppose G is a p -mixed splitting abelian group and R is a commutative unitary ring of zero characteristic such that the prime number p satisfies p inv ( R ) zd ( R ) . Then R ( H ) and R ( G ) are canonically isomorphic R -group algebras for any group H precisely when H and G are isomorphic groups. This statement strengthens results due to W. May published in J. Algebra (1976) and to W. Ullery published in Commun. Algebra (1986), Rocky Mt. J. Math. (1992) and Comment. Math. Univ. Carol. (1995).

Isomorphism of Commutative Modular Group Algebras

Danchev, P. (1997)

Serdica Mathematical Journal

∗ The work was supported by the National Fund “Scientific researches” and by the Ministry of Education and Science in Bulgaria under contract MM 70/91.Let K be a field of characteristic p > 0 and let G be a direct sum of cyclic groups, such that its torsion part is a p-group. If there exists a K-isomorphism KH ∼= KG for some group H, then it is shown that H ∼= G. Let G be a direct sum of cyclic groups, a divisible group or a simply presented torsion abelian group. Then KH ∼= KG as K-algebras...

Currently displaying 221 – 240 of 260