Isométrics parfaites entre blocs de groupes linéaires ou unitaires.
We provide a classification of isometries of systolic complexes corresponding to the classification of isometries of CAT(0)-spaces. We prove that any isometry of a systolic complex either fixes the barycentre of some simplex (elliptic case) or stabilizes a thick geodesic (hyperbolic case). This leads to an alternative proof of the fact that finitely generated abelian subgroups of systolic groups are undistorted.
We consider isometry groups of a fairly general class of non standard products of metric spaces. We present sufficient conditions under which the isometry group of a non standard product of metric spaces splits as a permutation group into direct or wreath product of isometry groups of some metric spaces.
Suppose is a -mixed splitting abelian group and is a commutative unitary ring of zero characteristic such that the prime number satisfies . Then and are canonically isomorphic -group algebras for any group precisely when and are isomorphic groups. This statement strengthens results due to W. May published in J. Algebra (1976) and to W. Ullery published in Commun. Algebra (1986), Rocky Mt. J. Math. (1992) and Comment. Math. Univ. Carol. (1995).
∗ The work was supported by the National Fund “Scientific researches” and by the Ministry of Education and Science in Bulgaria under contract MM 70/91.Let K be a field of characteristic p > 0 and let G be a direct sum of cyclic groups, such that its torsion part is a p-group. If there exists a K-isomorphism KH ∼= KG for some group H, then it is shown that H ∼= G. Let G be a direct sum of cyclic groups, a divisible group or a simply presented torsion abelian group. Then KH ∼= KG as K-algebras...