Displaying 561 – 580 of 667

Showing per page

Contraction of excess fibres between the McKay correspondences in dimensions two and three

Samuel Boissière, Alessandra Sarti (2007)

Annales de l’institut Fourier

The quotient singularities of dimensions two and three obtained from polyhedral groups and the corresponding binary polyhedral groups admit natural resolutions of singularities as Hilbert schemes of regular orbits whose exceptional fibres over the origin reveal similar properties. We construct a morphism between these two resolutions, contracting exactly the excess part of the exceptional fibre. This construction is motivated by the study of some pencils of K3 surfaces appearing as minimal resolutions...

Contraction par Frobenius de G -modules

Michel Gros, Masaharu Kaneda (2011)

Annales de l’institut Fourier

Soit G un groupe algébrique semi-simple simplement connexe défini sur un corps algébriquement clos 𝕜 de caractéristique positive. Nous donnons une nouvelle preuve de l’existence d’un scindage de Frobenius de la variété des drapeaux de G ainsi que de la nature G -équivariante de celui-ci. L’outil principal est un scindage de l’endomorphisme de Frobenius défini sur toute l’algèbre des distributions de G qui permet de « détordre » la structure des G -modules.

Contractions of Lie algebras and algebraic groups

Dietrich Burde (2007)

Archivum Mathematicum

Degenerations, contractions and deformations of various algebraic structures play an important role in mathematics and physics. There are many different definitions and special cases of these notions. We try to give a general definition which unifies these notions and shows the connections among them. Here we focus on contractions of Lie algebras and algebraic groups.

Convex lines in median groups

Milan Kolibiar (1992)

Archivum Mathematicum

There is proved that a convex maximal line in a median group G , containing 0, is a direct factor of G .

Co-rank and Betti number of a group

Irina Gelbukh (2015)

Czechoslovak Mathematical Journal

For a finitely generated group, we study the relations between its rank, the maximal rank of its free quotient, called co-rank (inner rank, cut number), and the maximal rank of its free abelian quotient, called the Betti number. We show that any combination of the group's rank, co-rank, and Betti number within obvious constraints is realized for some finitely presented group (for Betti number equal to rank, the group can be chosen torsion-free). In addition, we show that the Betti number is additive...

Currently displaying 561 – 580 of 667