The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying 41 – 60 of 82

Showing per page

Permutability of centre-by-finite groups

Brunetto Piochi (1989)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Let G be a group and m be an integer greater than or equal to 2 . G is said to be m -permutable if every product of m elements can be reordered at least in one way. We prove that, if G has a centre of finite index z , then G is ( 1 + [ z / 2 ] ) -permutable. More bounds are given on the least m such that G is m -permutable.

Su di un problema combinatorio in teoria dei gruppi

Mario Curzio, Patrizia Longobardi, Mercede Maj (1983)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Let G be a group and n an integer 2 . We say that G has the n -permutation property ( G P n ) if, for any elements x 1 , x 2 , , x n in G , there exists some permutation σ of { 1 , 2 , , n } , σ i d . such that x 1 , x 2 , , x n = x σ ( 1 ) , x σ ( 2 ) , , x σ ( n ) . We prouve that every group G P n is an FC-nilpotent group of class n - 1 , and that a finitely generated group has the n -permutation property (for some n ) if, and only if, it is abelian by finite. We prouve also that a group G P 3 if, and only if, its derived subgroup has order at most 2.

Currently displaying 41 – 60 of 82