Displaying 1321 – 1340 of 3839

Showing per page

Hilbert-Smith Conjecture for K - Quasiconformal Groups

Gong, Jianhua (2010)

Fractional Calculus and Applied Analysis

MSC 2010: 30C60A more general version of Hilbert's fifth problem, called the Hilbert-Smith conjecture, asserts that among all locally compact topological groups only Lie groups can act effectively on finite-dimensional manifolds. We give a solution of the Hilbert-Smith Conjecture for K - quasiconformal groups acting on domains in the extended n - dimensional Euclidean space.

Hölder a priori estimates for second order tangential operators on CR manifolds

Annamaria Montanari (2003)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

On a real hypersurface M in n + 1 of class C 2 , α we consider a local CR structure by choosing n complex vector fields W j in the complex tangent space. Their real and imaginary parts span a 2 n -dimensional subspace of the real tangent space, which has dimension 2 n + 1 . If the Levi matrix of M is different from zero at every point, then we can generate the missing direction. Under this assumption we prove interior a priori estimates of Schauder type for solutions of a class of second order partial differential equations...

Holomorphic actions, Kummer examples, and Zimmer program

Serge Cantat, Abdelghani Zeghib (2012)

Annales scientifiques de l'École Normale Supérieure

We classify compact Kähler manifolds M of dimension n 3 on which acts a lattice of an almost simple real Lie group of rank n - 1 . This provides a new line in the so-called Zimmer program, and characterizes certain complex tori as compact Kähler manifolds with large automorphisms groups.

Holomorphic automorphisms and collective compactness in J*-algebras of operator

José Isidro (2007)

Open Mathematics

Let G be the Banach-Lie group of all holomorphic automorphisms of the open unit ball B 𝔄 in a J*-algebra 𝔄 of operators. Let 𝔉 be the family of all collectively compact subsets W contained in B 𝔄 . We show that the subgroup F ⊂ G of all those g ∈ G that preserve the family 𝔉 is a closed Lie subgroup of G and characterize its Banach-Lie algebra. We make a detailed study of F when 𝔄 is a Cartan factor.

Homogeneous Carnot groups related to sets of vector fields

Andrea Bonfiglioli (2004)

Bollettino dell'Unione Matematica Italiana

In this paper, we are concerned with the following problem: given a set of smooth vector fields X 1 , , X m on R N , we ask whether there exists a homogeneous Carnot group G = ( R N , , δ λ ) such that i X i 2 is a sub-Laplacian on G . We find necessary and sufficient conditions on the given vector fields in order to give a positive answer to the question. Moreover, we explicitly construct the group law i as above, providing direct proofs. Our main tool is a suitable version of the Campbell-Hausdorff formula. Finally, we exhibit several...

Currently displaying 1321 – 1340 of 3839