The search session has expired. Please query the service again.
Displaying 21 –
40 of
192
In the 1950's and 1960's surface physicists/metallurgists such as
Herring and Mullins applied ingenious thermodynamic arguments to explain a
number of experimentally observed surface phenomena in crystals. These insights permitted
the successful engineering of a large number of alloys, where the
major mathematical novelty was that the surface response to external stress was anisotropic.
By examining step/terrace (vicinal) surface defects it was discovered through
lengthy and tedious experiments...
We investigate Baire classes of strongly affine mappings with values in Fréchet spaces. We show, in particular, that the validity of the vector-valued Mokobodzki result on affine functions of the first Baire class is related to the approximation property of the range space. We further extend several results known for scalar functions on Choquet simplices or on dual balls of L₁-preduals to the vector-valued case. This concerns, in particular, affine classes of strongly affine Baire mappings, the...
Let be a complex -predual, non-separable in general. We investigate extendability of complex-valued bounded homogeneous Baire- functions on the set of the extreme points of the dual unit ball to the whole unit ball . As a corollary we show that, given , the intrinsic -th Baire class of can be identified with the space of bounded homogeneous Baire- functions on the set when satisfies certain topological assumptions. The paper is intended to be a complex counterpart to the same authors’...
A characterization of functions in the first Baire class in terms of their sets of discontinuity is given. More precisely, a function is of the first Baire class if and only if for each there is a sequence of closed sets such that and for each where
and denotes the set of points of discontinuity of . The proof of the main theorem is based on a recent - characterization of Baire class one functions as well as on a well-known theorem due to Lebesgue. Some direct applications of...
We investigate Baire-one functions whose graph is contained in the graph of a usco mapping. We prove in particular that such a function defined on a metric space with values in is the pointwise limit of a sequence of continuous functions with graphs contained in the graph of a common usco map.
We prove that any Baire-one usco-bounded function from a metric space to a closed convex subset of a Banach space is the pointwise limit of a usco-bounded sequence of continuous functions.
A topological space is called base-base paracompact (John E. Porter) if it has an open base such that every base has a locally finite subcover . It is not known if every paracompact space is base-base paracompact. We study subspaces of the Sorgenfrey line (e.g. the irrationals, a Bernstein set) as a possible counterexample.
In this paper we study simultaneous approximation of real-valued functions in and give a generalization of some related results.
Kechris and Louveau in [5] classified the bounded Baire-1 functions, which are defined on a compact metric space , to the subclasses , . In [8], for every ordinal we define a new type of convergence for sequences of real-valued functions (-uniformly pointwise) which is between uniform and pointwise convergence. In this paper using this type of convergence we obtain a classification of pointwise convergent sequences of continuous real-valued functions defined on a compact metric space , and...
Currently displaying 21 –
40 of
192