The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 41 –
60 of
192
Nous donnons, pour chaque niveau de complexité Γ, une caractérisation du type "test d'Hurewicz" des boréliens d'un produit de deux espaces polonais ayant toutes leurs coupes dénombrables ne pouvant pas être rendus Γ par changement des deux topologies polonaises.
We characterize those Baire one functions f for which the diagonal product x → (f(x), g(x)) has a connected graph whenever g is approximately continuous or is a derivative.
We review the known facts and establish some new results concerning continuous-restrictions, derivative-restrictions, and differentiable-restrictions of Lebesgue measurable, universally measurable, and Marczewski measurable functions, as well as functions which have the Baire properties in the wide and restricted senses. We also discuss some known examples and present a number of new examples to show that the theorems are sharp.
It is shown to be consistent that every function of first Baire class can be decomposed into continuous functions yet the least cardinal of a dominating family in is . The model used in the one obtained by adding Miller reals to a model of the Continuum Hypothesis.
If E is a Banach space, any element x** in its bidual E** is an affine function on the dual unit ball that might possess a variety of descriptive properties with respect to the weak* topology. We prove several results showing that descriptive properties of x** are quite often determined by the behaviour of x** on the set of extreme points of , generalizing thus results of J. Saint Raymond and F. Jellett. We also prove a result on the relation between Baire classes and intrinsic Baire classes...
We give characterizations of the distributional derivatives , , of functions of two variables of locally finite variation. Then we use these results to prove the existence theorem for the hyperbolic equation with a nonhomogeneous term containing the distributional derivative determined by an additive function of an interval of finite variation. An application of the above theorem to a hyperbolic equation with an impulse effect is also given.
We prove that if a Δ¹₁ function f with Σ¹₁ domain X is σ-continuous then one can find a Δ¹₁ covering of X such that is continuous for all n. This is an effective version of a recent result by Pawlikowski and Sabok, generalizing an earlier result of Solecki.
It is shown that times Peano differentiable functions defined on a closed subset of and satisfying a certain condition on that set can be extended to times Peano differentiable functions defined on if and only if the th order Peano derivatives are Baire class one functions.
A classical theorem of Kuratowski says that every Baire one function on a subspace of a Polish (= separable completely metrizable) space X can be extended to a Baire one function on X. Kechris and Louveau introduced a finer gradation of Baire one functions into small Baire classes. A Baire one function f is assigned into a class in this hierarchy depending on its oscillation index β(f). We prove a refinement of Kuratowski’s theorem: if Y is a subspace of a metric space X and f is a real-valued...
We prove an abstract version of the Kuratowski extension theorem for Borel measurable maps of a given class. It enables us to deduce and improve its nonseparable version due to Hansell. We also study the ranges of not necessarily injective Borel bimeasurable maps f and show that some control on the relative classes of preimages and images of Borel sets under f enables one to get a bound on the absolute class of the range of f. This seems to be of some interest even within separable spaces.
We first prove that given any analytic filter ℱ on ω the set of all functions f on which can be represented as the pointwise limit relative to ℱ of some sequence of continuous functions (), is exactly the set of all Borel functions of class ξ for some countable ordinal ξ that we call the rank of ℱ. We discuss several structural properties of this rank. For example, we prove that any free Π⁰₄ filter is of rank 1.
Currently displaying 41 –
60 of
192