The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 61 –
80 of
169
A function f: ℝⁿ → ℝ satisfies the condition (resp. , ) at a point x if for each real r > 0 and for each set U ∋ x open in the Euclidean topology of ℝⁿ (resp. strong density topology, ordinary density topology) there is an open set I such that I ∩ U ≠ ∅ and . Kempisty’s theorem concerning the product quasicontinuity is investigated for the above notions.
A theorem of Lusin states that every Borel function onRis equal almost everywhere to the derivative of a continuous function. This result was later generalized to Rn in works of Alberti and Moonens-Pfeffer. In this note, we prove direct analogs of these results on a large class of metric measure spaces, those with doubling measures and Poincaré inequalities, which admit a form of differentiation by a famous theorem of Cheeger.
In [6], Guy David introduced some methods for finding controlled behavior in Lipschitz mappings with substantial images (in terms of measure). Under suitable conditions, David produces subsets on which the given mapping is bilipschitz, with uniform bounds for the bilipschitz constant and the size of the subset. This has applications for boundedness of singular integral operators and uniform rectifiability of sets, as in [6], [7], [11], [13]. Some special cases of David's results, concerning projections...
We prove necessary and sufficient conditions for the validity of the classical chain rule in the Sobolev space and in the space of functions of bounded
variation.
We comment on a problem of Mazur from “The Scottish Book" concerning second partial derivatives. We prove that if a function f(x,y) of real variables defined on a rectangle has continuous derivative with respect to y and for almost all y the function has finite variation, then almost everywhere on the rectangle the partial derivative exists. We construct a separately twice differentiable function whose partial derivative is discontinuous with respect to the second variable on a set of positive...
Currently displaying 61 –
80 of
169