Sur un théorème de Christensen
Let be a gauge function satisfying certain mid regularity conditions. A (signed) finite Borel measure is called -Zygmund if there exists a positive constant such that for any pair of adjacent cubes of the same size. Similarly, is called an - symmetric measure if there exists a positive constant such that for any pair of adjacent cubes of the same size, . We characterize Zygmund and symmetric measures in terms of their harmonic extensions. Also, we show that the quadratic condition...
The investigation of orthocomplemented lattices with a symmetric difference initiated the following question: Which orthomodular lattice can be embedded in an orthomodular lattice that allows for a symmetric difference? In this paper we present a necessary condition for such an embedding to exist. The condition is expressed in terms of -valued states and enables one, as a consequence, to clarify the situation in the important case of the lattice of projections in a Hilbert space.
On donne une condition combinatoire effective suffisante pour que le sytème dynamique associé à une substitution de type Pisot ait un spectre purement discret. Dans le cas unimodulaire, cette condition est nécessaire dès que la substitution n'a qu'un cobord trivial ; elle est vérifiée si et seulement si le fractal de Rauzy associé à la substitution engendre un pavage auto-similaire et périodique. On en déduit des conditions de connexité des fractals de Rauzy.
Let X be a locally compact, separable metric space. We prove that , where and stand for the concentration dimension and the topological dimension of X, respectively.