Previous Page 17

Displaying 321 – 337 of 337

Showing per page

Symmetric and Zygmund measures in several variables

Evgueni Doubtsov, Artur Nicolau (2002)

Annales de l’institut Fourier

Let ω : ( 0 , ) ( 0 , ) be a gauge function satisfying certain mid regularity conditions. A (signed) finite Borel measure μ n is called ω -Zygmund if there exists a positive constant C such that | μ ( Q + ) - μ ( Q - ) | C ω ( ( Q + ) ) | Q + | for any pair Q + , Q - n of adjacent cubes of the same size. Similarly, μ is called an ω - symmetric measure if there exists a positive constant C such that | μ ( Q + ) / μ ( Q - ) - 1 | C ω ( ( Q + ) ) for any pair Q + , Q - n of adjacent cubes of the same size, ( Q + ) = ( Q - ) < 1 . We characterize Zygmund and symmetric measures in terms of their harmonic extensions. Also, we show that the quadratic condition...

Symmetric difference on orthomodular lattices and Z 2 -valued states

Milan Matoušek, Pavel Pták (2009)

Commentationes Mathematicae Universitatis Carolinae

The investigation of orthocomplemented lattices with a symmetric difference initiated the following question: Which orthomodular lattice can be embedded in an orthomodular lattice that allows for a symmetric difference? In this paper we present a necessary condition for such an embedding to exist. The condition is expressed in terms of Z 2 -valued states and enables one, as a consequence, to clarify the situation in the important case of the lattice of projections in a Hilbert space.

Système dynamique à spectre discret et pavage périodique associé à une substitution

Anne Siegel (2004)

Annales de l’institut Fourier

On donne une condition combinatoire effective suffisante pour que le sytème dynamique associé à une substitution de type Pisot ait un spectre purement discret. Dans le cas unimodulaire, cette condition est nécessaire dès que la substitution n'a qu'un cobord trivial ; elle est vérifiée si et seulement si le fractal de Rauzy associé à la substitution engendre un pavage auto-similaire et périodique. On en déduit des conditions de connexité des fractals de Rauzy.

Szpilrajn type theorem for concentration dimension

Jozef Myjak, Tomasz Szarek (2002)

Fundamenta Mathematicae

Let X be a locally compact, separable metric space. We prove that d i m T X = i n f d i m L X ' : X ' i s h o m e o m o r p h i c t o X , where d i m L X and d i m T X stand for the concentration dimension and the topological dimension of X, respectively.

Currently displaying 321 – 337 of 337

Previous Page 17