The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Page 1 Next

Displaying 1 – 20 of 6223

Showing per page

3x+1 inverse orbit generating functions almost always have natural boundaries

Jason P. Bell, Jeffrey C. Lagarias (2015)

Acta Arithmetica

The 3x+k function T k ( n ) sends n to (3n+k)/2, resp. n/2, according as n is odd, resp. even, where k ≡ ±1 (mod 6). The map T k ( · ) sends integers to integers; for m ≥1 let n → m mean that m is in the forward orbit of n under iteration of T k ( · ) . We consider the generating functions f k , m ( z ) = n > 0 , n m z n , which are holomorphic in the unit disk. We give sufficient conditions on (k,m) for the functions f k , m ( z ) to have the unit circle |z|=1 as a natural boundary to analytic continuation. For the 3x+1 function these conditions hold for all m...

517.53

Е.М. Никишин (1980)

Matematiceskij sbornik

5-dissections and sign patterns of Ramanujan's parameter and its companion

Shane Chern, Dazhao Tang (2021)

Czechoslovak Mathematical Journal

In 1998, Michael Hirschhorn discovered the 5-dissection formulas of the Rogers-Ramanujan continued fraction R ( q ) and its reciprocal. We obtain the 5-dissections for functions R ( q ) R ( q 2 ) 2 and R ( q ) 2 / R ( q 2 ) , which are essentially Ramanujan’s parameter and its companion. Additionally, 5-dissections of the reciprocals of these two functions are derived. These 5-dissection formulas imply that the coefficients in their series expansions have periodic sign patterns with few exceptions.

A Cauchy-Pompeiu formula in super Dunkl-Clifford analysis

Hongfen Yuan (2017)

Czechoslovak Mathematical Journal

Using a distributional approach to integration in superspace, we investigate a Cauchy-Pompeiu integral formula in super Dunkl-Clifford analysis and several related results, such as Stokes formula, Morera's theorem and Painlevé theorem for super Dunkl-monogenic functions. These results are nice generalizations of well-known facts in complex analysis.

A characterization of Fuchsian groups acting on complex hyperbolic spaces

Xi Fu, Liulan Li, Xiantao Wang (2012)

Czechoslovak Mathematical Journal

Let G 𝐒𝐔 ( 2 , 1 ) be a non-elementary complex hyperbolic Kleinian group. If G preserves a complex line, then G is -Fuchsian; if G preserves a Lagrangian plane, then G is -Fuchsian; G is Fuchsian if G is either -Fuchsian or -Fuchsian. In this paper, we prove that if the traces of all elements in G are real, then G is Fuchsian. This is an analogous result of Theorem V.G. 18 of B. Maskit, Kleinian Groups, Springer-Verlag, Berlin, 1988, in the setting of complex hyperbolic isometric groups. As an application...

Currently displaying 1 – 20 of 6223

Page 1 Next