Displaying 2301 – 2320 of 6223

Showing per page

Maximal real Schottky groups.

Rubén A. Hidalgo (2004)

Revista Matemática Iberoamericana

Let S be a real closed Riemann surfaces together a reflection τ : S ---> S, that is, an anticonformal involution with fixed points. A well known fact due to C. L. May asserts that the group K(S, τ), consisting on all automorphisms ...

Maximally convergent rational approximants of meromorphic functions

Hans-Peter Blatt (2015)

Banach Center Publications

Let f be meromorphic on the compact set E ⊂ C with maximal Green domain of meromorphy E ρ ( f ) , ρ(f) < ∞. We investigate rational approximants r n , m of f on E with numerator degree ≤ n and denominator degree ≤ mₙ. We show that a geometric convergence rate of order ρ ( f ) - n on E implies uniform maximal convergence in m₁-measure inside E ρ ( f ) if mₙ = o(n/log n) as n → ∞. If mₙ = o(n), n → ∞, then maximal convergence in capacity inside E ρ ( f ) can be proved at least for a subsequence Λ ⊂ ℕ. Moreover, an analogue of Walsh’s...

Maximum modulus in a bidisc of analytic functions of bounded 𝐋 -index and an analogue of Hayman’s theorem

Andriy Bandura, Nataliia Petrechko, Oleh Skaskiv (2018)

Mathematica Bohemica

We generalize some criteria of boundedness of 𝐋 -index in joint variables for in a bidisc analytic functions. Our propositions give an estimate the maximum modulus on a skeleton in a bidisc and an estimate of ( p + 1 ) th partial derivative by lower order partial derivatives (analogue of Hayman’s theorem).

Meandering of trajectories of polynomial vector fields in the affine n-space.

Dimitri Novikov, Sergei Yakovenko (1997)

Publicacions Matemàtiques

We give an explicit upper bound for the number of isolated intersections between an integral curve of a polynomial vector field in Rn and an affine hyperplane.The problem turns out to be closely related to finding an explicit upper bound for the length of ascending chains of polynomial ideals spanned by consecutive derivatives.This exposition constitutes an extended abstract of a forthcoming paper: only the basic steps are outlined here, with all technical details being either completely omitted...

Measured geodesic laminations in Flatland

Thomas Morzadec (2012/2014)

Séminaire de théorie spectrale et géométrie

Since their introduction by Thurston, measured geodesic laminations on hyperbolic surfaces occur in many contexts. In this survey, we give a generalization of geodesic laminations on surfaces endowed with a half-translation structure (that is a singular flat surface with holonomy { ± Id } ), called flat laminations, and we define transverse measures on flat laminations similar to transverse measures on hyperbolic laminations, taking into account that the images of the leaves of a flat lamination are in...

Measures connected with Bargmann's representation of the q-commutation relation for q > 1

Ilona Królak (1998)

Banach Center Publications

Classical Bargmann’s representation is given by operators acting on the space of holomorphic functions with scalar product z n , z k q = δ n , k [ n ] q ! = F ( z n z ¯ k ) . We consider the problem of representing the functional F as a measure. We prove the existence of such a measure for q > 1 and investigate some of its properties like uniqueness and radiality.

Meilleure approximation polynomiale et croissance des fonctions entières sur certaines variétés algébriques affines

Ahmed Zeriahi (1987)

Annales de l'institut Fourier

Soit K un compact polynomialement convexe de C n et V K son “potentiel logarithmique extrémal” dans C n . Supposons que K est régulier (i.e. V K continue) et soit f une fonction holomorphe sur un voisinage de K . On construit alors une suite { P } 1 de polynôme de n variables complexes avec deg ( P ) pour 1 , telle que l’erreur d’approximation max z K | f ( z ) - P ( z ) | soit contrôlée de façon assez précise en fonction du “pseudorayon de convergence” de f par rapport à K et du degré de convergence . Ce résultat est ensuite utilisé pour étendre...

Currently displaying 2301 – 2320 of 6223