Displaying 301 – 320 of 702

Showing per page

A Riemann-Hilbert problem with a vanishing coefficient and applications to Toeplitz operators

A. Perälä, J. A. Virtanen, L. Wolf (2013)

Concrete Operators

We study the homogeneous Riemann-Hilbert problem with a vanishing scalar-valued continuous coefficient. We characterize non-existence of nontrivial solutions in the case where the coefficient has its values along several rays starting from the origin. As a consequence, some results on injectivity and existence of eigenvalues of Toeplitz operators in Hardy spaces are obtained.

Currently displaying 301 – 320 of 702