Annular functions form a residual set.
The Burchnall-Chaundy-Krichever correspondence which converts meromorphic functions on a curve into differential operators is used to interpret Weil's reciprocity as the calculation of a resultant.
MSC 2010: 30C45, 30C50The purpose of the present paper is to introduce a new subclass of holomorphic univalent functions with negative and fixed finitely coefficient based on Salagean and Ruscheweyh differential operators. The various results investigated in this paper include coefficient estimates, extreme points and Radii properties.
MSC 2010: 30C45, 30C55The aim of this paper is to give an application of the subordination principle to the class of spirallike logharmonic mappings which was introduced by Abdulhadi and Hengartner [1].
Nous étudions les fonctions -adiques associées à des séries du typedans certains cas, où elles admettent un prolongement méromorphe à avec un nombre fini de pôles et des valeurs aux entiers négatifs algébriques. On retrouve comme cas particulier les fonctions -adiques des corps totalement réels et les fonctions -multiples -adiques.
The object of the present paper is to illustrate the usefulness, in the theory of analytic functions, of various linear operators which are defined in terms of (for example) fractional derivatives and fractional integrals, Hadamard product or convolution, and so on.