Displaying 581 – 600 of 702

Showing per page

Another algebraic proof of Weil's reciprocity

Emma Previato (1991)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

The Burchnall-Chaundy-Krichever correspondence which converts meromorphic functions on a curve into differential operators is used to interpret Weil's reciprocity as the calculation of a resultant.

Application of Salagean and Ruscheweyh Operators on Univalent Holomorphic Functions with Finitely many Coefficients

Najafzadeh, Shahram (2010)

Fractional Calculus and Applied Analysis

MSC 2010: 30C45, 30C50The purpose of the present paper is to introduce a new subclass of holomorphic univalent functions with negative and fixed finitely coefficient based on Salagean and Ruscheweyh differential operators. The various results investigated in this paper include coefficient estimates, extreme points and Radii properties.

Applications arithmétiques de l'étude des valeurs aux entiers négatifs des séries de Dirichlet associées à un polynôme

Philippe Cassou-Noguès (1981)

Annales de l'institut Fourier

Nous étudions les fonctions p -adiques associées à des séries du type Z ( P , Q , ξ ) ( s ) = n N r Q ( n ) ξ n P ( n ) - s dans certains cas, où elles admettent un prolongement méromorphe à C avec un nombre fini de pôles et des valeurs aux entiers négatifs algébriques. On retrouve comme cas particulier les fonctions L p -adiques des corps totalement réels et les fonctions Γ -multiples p -adiques.

Applications of certain linear operators in the theory of analytic functions

H. M. Srivastava (1991)

Annales Polonici Mathematici

The object of the present paper is to illustrate the usefulness, in the theory of analytic functions, of various linear operators which are defined in terms of (for example) fractional derivatives and fractional integrals, Hadamard product or convolution, and so on.

Currently displaying 581 – 600 of 702