Displaying 661 – 680 of 702

Showing per page

Asymptotic behavior of the sectional curvature of the Bergman metric for annuli

Włodzimierz Zwonek (2010)

Annales Polonici Mathematici

We extend and simplify results of [Din 2010] where the asymptotic behavior of the holomorphic sectional curvature of the Bergman metric in annuli is studied. Similarly to [Din 2010] the description enables us to construct an infinitely connected planar domain (in our paper it is a Zalcman type domain) for which the supremum of the holomorphic sectional curvature is two, whereas its infimum is equal to -∞ .

Asymptotic distribution and symmetric means of algebraic numbers

Igor E. Pritsker (2015)

Acta Arithmetica

Schur introduced the problem on the smallest limit point for the arithmetic means of totally positive conjugate algebraic integers. This area was developed further by Siegel, Smyth and others. We consider several generalizations of the problem that include questions on the smallest limit points of symmetric means. The key tool used in the study is the asymptotic distribution of algebraic numbers understood via the weak* limits of their counting measures. We establish interesting properties of the...

Asymptotic stability for sets of polynomials

Thomas W. Müller, Jan-Christoph Schlage-Puchta (2005)

Archivum Mathematicum

We introduce the concept of asymptotic stability for a set of complex functions analytic around the origin, implicitly contained in an earlier paper of the first mentioned author (“Finite group actions and asymptotic expansion of e P ( z ) ", Combinatorica 17 (1997), 523 – 554). As a consequence of our main result we find that the collection of entire functions exp ( 𝔓 ) with 𝔓 the set of all real polynomials P ( z ) satisfying Hayman’s condition [ z n ] exp ( P ( z ) ) > 0 ( n n 0 ) is asymptotically stable. This answers a question raised in loc. cit.

Asymptotic values and the growth of analytic functions in spiral domains.

James E. Brennan, Alexander L. Volberg (1993)

Publicacions Matemàtiques

In this note we present a simple proof of a theorem of Hornblower which characterizes those functions analytic in the open unit disk having asymptotic values at a dense set in the boundary. Our method is based on a kind of ∂-mollification and may be of use in other problems as well.

Currently displaying 661 – 680 of 702