Displaying 681 – 700 of 702

Showing per page

Asymptotically conformal classes and non-Strebel points

Guowu Yao (2016)

Studia Mathematica

Let T(Δ) be the universal Teichmüller space on the unit disk Δ and T₀(Δ) be the set of asymptotically conformal classes in T(Δ). Suppose that μ is a Beltrami differential on Δ with [μ] ∈ T₀(Δ). It is an interesting question whether [tμ] belongs to T₀(Δ) for general t ≠ 0, 1. In this paper, it is shown that there exists a Beltrami differential μ ∈ [0] such that [tμ] is a non-trivial non-Strebel point for any t ( - 1 / | | μ | | , 1 / | | μ | | ) 0 , 1 .

Atomic decomposition of a weighted inductive limit.

Jari Taskinen (2003)

RACSAM

Estudiamos algunas cuestiones estructurales acerca del espacio localmente convexo HV∞, que está formado por funciones analíticas en el disco unidad abierto. Construimos una descomposición atómica de este espacio, usando un retículo de puntos del disco unidad que es más denso que el usual. También demostramos que HV∞ no es nuclear.

Attractors with vanishing rotation number

Rafael Ortega, Francisco Ruiz del Portal (2011)

Journal of the European Mathematical Society

Given an orientation-preserving homeomorphism of the plane, a rotation number can be associated with each locally attracting fixed point. Assuming that the homeomorphism is dissipative and the rotation number vanishes we prove the existence of a second fixed point. The main tools in the proof are Carath´eodory prime ends and fixed point index. The result is applicable to some concrete problems in the theory of periodic differential equations.

Currently displaying 681 – 700 of 702