The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 61 –
80 of
163
For γ ∈ ℂ such that |γ| < π/2 and 0 ≤ β < 1, let denote the class of all analytic functions P in the unit disk with P(0) = 1 and
in .
For any fixed z₀ ∈ and λ ∈ ̅, we shall determine the region of variability for when P ranges over the class
As a consequence, we present the region of variability for some subclasses of univalent functions. We also graphically illustrate the region of variability for several sets of parameters.
For μ ∈ ℂ such that Re μ > 0 let denote the class of all non-vanishing analytic functions f in the unit disk with f(0) = 1 and
in .
For any fixed z₀ in the unit disk, a ∈ ℂ with |a| ≤ 1 and λ ∈ ̅, we shall determine the region of variability V(z₀,λ) for log f(z₀) when f ranges over the class
.
In the final section we graphically illustrate the region of variability for several sets of parameters.
Holomorphic correspondences are multivalued maps between Riemann surfaces Z and W, where Q̃₋ and Q̃₊ are (single-valued) holomorphic maps from another Riemann surface X onto Z and W respectively. When Z = W one can iterate f forwards, backwards or globally (allowing arbitrarily many changes of direction from forwards to backwards and vice versa). Iterated holomorphic correspondences on the Riemann sphere display many of the features of the dynamics of Kleinian groups and rational maps, of which...
Définitions et propriétés des notions nouvelles de demi-plans, droites et abscisses de régularité et de suprarégularité pour une famille de germes dirichlétiens, par rapport à un support commun de référence. Conditions suffisantes (du type de Landau-Fekete) d’égalité de ces abscisses et expressions algorithmiques de majorants. Relations de dépendance (du type de V. Bernstein) entre les différentes abscisses considérées d’une famille donnée. Extensions de résultats classiques relatifs à la famille...
Dans le chapitre I on indique la croissance de et de la fonction convexe pour que de
Currently displaying 61 –
80 of
163