Characterization of the collapsing meromorphic products.
Extending previous work by Meise and Vogt, we characterize those convolution operators, defined on the space of (ω)-quasianalytic functions of Beurling type of one variable, which admit a continuous linear right inverse. Also, we characterize those (ω)-ultradifferential operators which admit a continuous linear right inverse on for each compact interval [a,b] and we show that this property is in fact weaker than the existence of a continuous linear right inverse on .
We define certain classes of functions associated with functions of bounded variation. Some characterizations of those classes are given.
In the paper we define classes of meromorphic multivalent functions with Montel’s normalization. We investigate the coefficients estimates, distortion properties, the radius of starlikeness, subordination theorems and partial sums for the defined classes of functions. Some remarks depicting consequences of the main results are also mentioned.