The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Soit , ouvert de et , continue. On dit qu’une majorante surharmonique de dans est minimale si cette majorante surharmonique est harmonique dans l’ensemble (ouvert) où elle diffère de . Beaucoup de propriétés de ces fonctions sont semblables à celles des fonctions harmoniques (lesquelles correspondent à ) ; par exemple la famille entière est uniformément équicontinue dans chaque partie compacte de , relativement à la structure uniforme de . On traite le problème de Dirichlet : détermination...
The main result of this paper is the following: if a compact subset E of is UPC in the direction of a vector then E has the Markov property in the direction of v. We present a method which permits us to generalize as well as to improve an earlier result of Pawłucki and Pleśniak [PP1].
Consider the normed space of all polynomials of N complex variables, where || || a norm is such that the mapping is continuous, with g being a fixed polynomial. It is shown that the Markov type inequality
, j = 1,...,N, ,
with positive constants M and m is equivalent to the inequality
, ,
with some positive constants M’ and m’. A similar equivalence result is obtained for derivatives of a fixed order k ≥ 2, which can be more specifically formulated in the language of normed algebras. In...
In this paper, we study the Martin boundary associated with a harmonic structure given by a coupled partial differential equations system. We give an integral representation for non negative harmonic functions of this structure. In particular, we obtain such results for biharmonic functions (i.e. ) and for non negative solutions of the equation .
In this paper we treat noncoercive operators on simply connected homogeneous manifolds of negative curvature.
We study two known theorems regarding Hermitian matrices: Bellman's principle and Hadamard's theorem. Then we apply them to problems for the complex Monge-Ampère operator. We use Bellman's principle and the theory for plurisubharmonic functions of finite energy to prove a version of subadditivity for the complex Monge-Ampère operator. Then we show how Hadamard's theorem can be extended to polyradial plurisubharmonic functions.
On the domain S_a = {(x,e^b): x ∈ N, b ∈ ℝ, b > a} where N is a simply connected nilpotent Lie group, a certain N-left-invariant, second order, degenerate elliptic operator L is considered. N × {e^a} is the Poisson boundary for L-harmonic functions F, i.e. F is the Poisson integral F(xe^b) = ʃ_N f(xy)dμ^b_a(x), for an f in L^∞(N). The main theorem of the paper asserts that the maximal function M^a f(x) = sup{|ʃf(xy)dμ_a^b(y)| : b > a} is of weak type (1,1).
Assume that u, v are conjugate harmonic functions on the unit disc of ℂ, normalized so that u(0) = v(0) = 0. Let u*, |v|* stand for the one- and two-sided Brownian maxima of u and v, respectively. The paper contains the proof of the sharp weak-type estimate
ℙ(|v|* ≥ 1)≤ (1 + 1/3² + 1/5² + 1/7² + ...)/(1 - 1/3² + 1/5² - 1/7² + ...) 𝔼u*.
Actually, this estimate is shown to be true in the more general setting of differentially subordinate harmonic functions defined...
Currently displaying 1 –
20 of
55