A Remark on the Local Stein-Ness Problem.
If H denotes a Hilbert space of analytic functions on a region Ω ⊆ Cd , then the weak product is defined by [...] We prove that if H is a first order holomorphic Besov Hilbert space on the unit ball of Cd , then the multiplier algebras of H and of H ⊙ H coincide.
Let an open set in near , a suitable holomorphic function near . If we know that we can solve the following problem (see [M. Derridj, Annali. Sci. Norm. Pisa, Série IV, vol. IX (1981)]) : , ( is a form, closed in in with supp, then we deduce an extension result for functions on , as holomorphic fonctions in .
We prove a comparison principle for the log canonical threshold of plurisubharmonic functions under an assumption on complex Monge-Ampère measures.
Let be a holomorphic differential operator acting on sections of a holomorphic vector bundle on an -dimensional compact complex manifold. We prove a formula, conjectured by Feigin and Shoikhet, giving the Lefschetz number of as the integral over the manifold of a differential form. The class of this differential form is obtained via formal differential geometry from the canonical generator of the Hochschild cohomology of the algebra of differential operators on a formal neighbourhood of a...
A version of the Schwarz lemma for correspondences is studied. Two applications are obtained namely, the 'non-increasing' property of the Kobayashi metric under correspondences and a weak version of the Wong-Rosay theorem for convex, finite type domains admitting a 'non-compact' family of proper correspondences.
We give a Schwarz lemma on complex ellipsoids.
Let U be a neighbourhood of 0 ∈ ℂⁿ. We show that for a holomorphic mapping , F(0) = 0, the Łojasiewicz exponent ₀(F) is attained on the set z ∈ U: f₁(z)·...·fₘ(z) = 0.
We show that for a polynomial mapping the Łojasiewicz exponent of F is attained on the set .