Displaying 321 – 340 of 480

Showing per page

Sulle classi di Dolbeault di tipo ( 0 , n - 1 ) con singolarità in un insieme discreto

Paolo Zappa (1981)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

This paper shows how some techniques used for the meromorphic functions of one variable can be used for the explicit construction of a solution to the Mittag-Leffler problem for Dolbeault classes of tipe ( 0 , n - 1 ) with singularities in a discrete set of 𝐂 𝐧 and T n (a n -dimensional complex torus). A generalisation is given for the Weierstrass ζ and the Legendre relations.

Supersolvable orders and inductively free arrangements

Ruimei Gao, Xiupeng Cui, Zhe Li (2017)

Open Mathematics

In this paper, we define the supersolvable order of hyperplanes in a supersolvable arrangement, and obtain a class of inductively free arrangements according to this order. Our main results improve the conclusion that every supersolvable arrangement is inductively free. In addition, we assert that the inductively free arrangement with the required induction table is supersolvable.

Supplement to the paper "Quasianalytic perturbation of multi-parameter hyperbolic polynomials and symmetric matrices" (Ann. Polon. Math. 101 (2011), 275-291)

Krzysztof Jan Nowak (2012)

Annales Polonici Mathematici

In IMUJ Preprint 2009/05 we investigated the quasianalytic perturbation of hyperbolic polynomials and symmetric matrices by applying our quasianalytic version of the Abhyankar-Jung theorem from IMUJ Preprint 2009/02, whose proof relied on a theorem by Luengo on ν-quasiordinary polynomials. But those papers of ours were suspended after we had become aware that Luengo's paper contained an essential gap. This gave rise to our subsequent article on quasianalytic perturbation theory, which developed,...

Sur certaines singularités non isolées d’hypersurfaces I

Daniel Barlet (2006)

Bulletin de la Société Mathématique de France

L’objectif de cet article est de mettre en place, dans le cadre de fonctions à lieu singulier de dimension 1, avec des hypothèses assez restrictives mais donnant accès à beaucoup d’exemples non triviaux, l’analogue de la théorie de E.Brieskorn pour une fonction à singularité isolée. Les principaux résultats sont le théorème de finitude pour le ( a , b ) -module associé à l’origine, qui est obtenu via le théorème de constructibilité de M. Kashiwara, et les résultats de non torsion pour une courbe plane (non...

Sur la b -fonction

M. Kashiwara (1974/1975)

Séminaire Équations aux dérivées partielles (Polytechnique)

Sur la composition de séries formelles à croissance contrôlée

Augustin Mouze (2002)

Annali della Scuola Normale Superiore di Pisa - Classe di Scienze

Let F be a holomorphic map from s to s defined in a neighborhood of zero such that F ( 0 ) = 0 . If the jacobian determinant of F is not identically zero, P. M. Eakin and G. A. Harris proved the following result: any formal power series 𝒜 such that 𝒜 F is analytic is itself analytic. If the jacobian determinant of F is identically zero, they proved that the previous conclusion is no more true. J. Chaumat and A.-M. Chollet extended this result in the case of formal power series satisfying growth conditions, of...

Currently displaying 321 – 340 of 480