Displaying 1321 – 1340 of 5576

Showing per page

Division and extension in weighted Bergman-Sobolev spaces.

Joaquín M. Ortega, Joan Fàbrega (1992)

Publicacions Matemàtiques

Let D be a bounded strictly pseudoconvex domain of Cn with C ∞ boundary and Y = {z; u1(z) = ... = ul(z) = 0} a holomorphic submanifold in the neighbourhood of D', of codimension l and transversal to the boundary of D.In this work we give a decomposition formula f = u1f1 + ... + ulfl for functions f of the Bergman-Sobolev space vanishing on M = Y ∩ D. Also we give necessary and sufficient conditions on a set of holomorphic functions {fα}|α|≤m on M, so that there exists a holomorphic function in the...

Division dans l'anneau des séries formelles à croissance contrôlée. Applications

Augustin Mouze (2001)

Studia Mathematica

We consider subrings A of the ring of formal power series. They are defined by growth conditions on coefficients such as, for instance, Gevrey conditions. We prove a Weierstrass-Hironaka division theorem for such subrings. Moreover, given an ideal ℐ of A and a series f in A we prove the existence in A of a unique remainder r modulo ℐ. As a consequence, we get a new proof of the noetherianity of A.

Division et composition dans l'anneau des séries de Dirichlet analytiques

Frédéric Bayart, Augustin Mouze (2003)

Annales de l'Institut Fourier

Ce travail est une étude analytique locale de l’anneau des séries de Dirichlet convergentes. Dans un premier temps, on établit des propriétés arithmétiques de cet anneau ; on prouve en particulier sa factorialité, que l’on déduit de théorèmes de division du type Weierstrass. Ensuite, on s’intéresse à des problèmes de composition. Soient f ( s ) et ϕ ( s ) des séries de Dirichlet convergentes. On sait que f ( c 0 s + ϕ ( s ) ) , avec c 0 * , est encore une série de Dirichlet convergente. On étudie la réciproque : sous les hypothèses que...

Division et extension dans des classes de Carleman de fonctions holomorphes

Vincent Thilliez (1998)

Banach Center Publications

Let Ω be a bounded pseudoconvex domain in n with C 1 boundary and let X be a complete intersection submanifold of Ω, defined by holomorphic functions v 1 , . . . , v p (1 ≤ p ≤ n-1) smooth up to ∂Ω. We give sufficient conditions ensuring that a function f holomorphic in X (resp. in Ω, vanishing on X), and smooth up to the boundary, extends to a function g holomorphic in Ω and belonging to a given strongly non-quasianalytic Carleman class l ! M l in Ω ¯ (resp. satisfies f = v 1 f 1 + . . . + v p f p with f 1 , . . . , f p holomorphic in Ω and l ! M l -regular in Ω ¯ ). The essential...

Divisors in global analytic sets

Francesca Acquistapace, A. Díaz-Cano (2011)

Journal of the European Mathematical Society

We prove that any divisor Y of a global analytic set X n has a generic equation, that is, there is an analytic function vanishing on Y with multiplicity one along each irreducible component of Y . We also prove that there are functions with arbitrary multiplicities along Y . The main result states that if X is pure dimensional, Y is locally principal, X / Y is not connected and Y represents the zero class in H q - 1 ( X , 2 ) then the divisor Y is globally principal.

Dolbeault homotopy theory and compact nilmanifolds

L. Cordero, M. Fernández, A. Gray, L. Ugarte (1998)

Banach Center Publications

In this paper we study the degeneration of both the cohomology and the cohomotopy Frölicher spectral sequences in a special class of complex manifolds, namely the class of compact nilmanifolds endowed with a nilpotent complex structure. Whereas the cohomotopy spectral sequence is always degenerate for such a manifold, there exist many nilpotent complex structures on compact nilmanifolds for which the classical Frölicher spectral sequence does not collapse even at the second term.

Currently displaying 1321 – 1340 of 5576