Geometry of the Kepler system in coherent states approach
We study polynomial iterative roots of polynomials and describe the locus of complex polynomials of degree 4 admitting a polynomial iterative square root.
We investigate the geometry of universal embedding spaces for compact almost-complex manifolds of a given dimension, and related constructions that allow for an extrinsic study of the integrability of almost-complex structures. These embedding spaces were introduced by J-P. Demailly and H. Gaussier, and are complex algebraic analogues of twistor spaces. Their goal was to study a conjecture made by F. Bogomolov asserting the “transverse embeddability” of arbitrary compact complex manifolds into foliated...
We study germs of holomorphic mappings between general algebraic hypersurfaces. Our main result is the following. If and are two germs of real algebraic hypersurfaces in , , is not Levi-flat and is a germ at of a holomorphic mapping such that and then the so-called reflection function associated to is always holomorphic algebraic. As a consequence, we obtain that if is given in the so-called normal form, the transversal component of is always algebraic. Another corollary of...
For a bounded domain of , we introduce a notion of «-pseudoconvexity» of new type and prove that for a given -closed -form that is smooth up to the boundary on , and for , there exists a -form smooth up to the boundary on which is a solution of the equation
Let be a quasi-Hermitian Lie group with Lie algebra and be a compactly embedded subgroup of . Let be a regular element of which is fixed by . We give an explicit -equivariant diffeomorphism from a complex domain onto the coadjoint orbit of . This generalizes a result of [B. Cahen, Berezin quantization and holomorphic representations, Rend. Sem. Mat. Univ. Padova, to appear] concerning the case where is associated with a unitary irreducible representation of which is holomorphically...
This is a survey on the history of and the solutions to the basic global problems on Nash functions, which have been only recently solved, namely: separation, extension, global equations, Artin-Mazur description and idempotency, also noetherianness. We discuss all of them in the various possible contexts, from manifolds over the reals to real spectra of arbitrary commutative rings.