Displaying 221 – 240 of 576

Showing per page

Persistence and bifurcation analysis on a predator–prey system of holling type

Debasis Mukherjee (2003)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

We present a Gause type predator–prey model incorporating delay due to response of prey population growth to density and gestation. The functional response of predator is assumed to be of Holling type II. In absence of prey, predator has a density dependent death rate. Sufficient criterion for uniform persistence is derived. Conditions are found out for which system undergoes a Hopf–bifurcation.

Persistence and bifurcation analysis on a predator–prey system of holling type

Debasis Mukherjee (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

We present a Gause type predator–prey model incorporating delay due to response of prey population growth to density and gestation. The functional response of predator is assumed to be of Holling type II. In absence of prey, predator has a density dependent death rate. Sufficient criterion for uniform persistence is derived. Conditions are found out for which system undergoes a Hopf–bifurcation.

Persistence and extinction of a stochastic delay predator-prey model under regime switching

Zhen Hai Liu, Qun Liu (2014)

Applications of Mathematics

The paper is concerned with a stochastic delay predator-prey model under regime switching. Sufficient conditions for extinction and non-persistence in the mean of the system are established. The threshold between persistence and extinction is also obtained for each population. Some numerical simulations are introduced to support our main results.

Perturbation singulière en dimension trois : canards en un point pseudo-singulier nœud

Éric Benoît (2001)

Bulletin de la Société Mathématique de France

On étudie les systèmes différentiels singulièrement perturbés de dimension 3 du type { x ˙ = f ( x , y , z , ε ) , y ˙ = g ( x , y , z , ε ) , ε z ˙ = h ( x , y , z , ε ) , f , g , h sont analytiques quelconques. Les travaux antérieurs étudiaient les points réguliers où la surface lente h = 0 est transverse au champ rapide vertical. C’est le domaine d’application du théorème de Tikhonov. Dans d’autres travaux antérieurs, on étudiait les singularités de certains types : plis et fronces de la surface lente, ainsi que certaines singularités plus compliquées, analogues aux points tournants...

Perturbation stochastique de processus de rafle

Frédéric Bernicot (2008/2009)

Séminaire Équations aux dérivées partielles

Lors de cet exposé, nous nous intéressons à l’étude de perturbations stochastiques de certaines inclusions différentielles du premier ordre  : les processus de rafle par des ensembles uniformément prox-réguliers. Ce travail nous amène à combiner la théorie des processus de rafle et celle traitant de la reflexion d’un mouvement brownien sur la frontière d’un ensemble. Nous donnerons des résultats traitant du caractère bien-posé de ces inclusions différentielles stochastiques et de leur stabilité.

Currently displaying 221 – 240 of 576