Displaying 221 – 240 of 475

Showing per page

The period of a whirling pendulum

Hana Lichardová (2001)

Mathematica Bohemica

The period function of a planar parameter-depending Hamiltonian system is examined. It is proved that, depending on the value of the parameter, it is either monotone or has exactly one critical point.

The periodic Ambrosetti-Prodi problem for nonlinear perturbations of the p-Laplacian

Jean Mawhin (2006)

Journal of the European Mathematical Society

We prove an Ambrosetti–Prodi type result for the periodic solutions of the equation ( | u ' | p 2 u ' ) ) ' + f ( u ) u ' + g ( x , u ) = t , when f is arbitrary and g ( x , u ) + or g ( x , u ) when | u | . The proof uses upper and lower solutions and the Leray–Schauder degree.

The periodic problem for semilinear differential inclusions in Banach spaces

Ralf Bader (1998)

Commentationes Mathematicae Universitatis Carolinae

Sufficient conditions on the existence of periodic solutions for semilinear differential inclusions are given in general Banach space. In our approach we apply the technique of the translation operator along trajectories. Due to recent results it is possible to show that this operator is a so-called decomposable map and thus admissible for certain fixed point index theories for set-valued maps. Compactness conditions are formulated in terms of the Hausdorff measure of noncompactness.

The periodic problem for the second order integro-differential equations with distributed deviation

Sulkhan Mukhigulashvili, Veronika Novotná (2021)

Mathematica Bohemica

We study the question of the unique solvability of the periodic type problem for the second order linear integro-differential equation with distributed argument deviation u ' ' ( t ) = p 0 ( t ) u ( t ) + 0 ω p ( t , s ) u ( τ ( t , s ) ) d s + q ( t ) , and on the basis of the obtained results by the a priori boundedness principle we prove the new results on the solvability of periodic type problem for the second order nonlinear functional differential equations, which are close to the linear integro-differential equations. The proved results are optimal in some sense.

The principle of stationary action in the calculus of variations

Emanuel López, Alberto Molgado, José A. Vallejo (2012)

Communications in Mathematics

We review some techniques from non-linear analysis in order to investigate critical paths for the action functional in the calculus of variations applied to physics. Our main intention in this regard is to expose precise mathematical conditions for critical paths to be minimum solutions in a variety of situations of interest in Physics. Our claim is that, with a few elementary techniques, a systematic analysis (including the domain for which critical points are genuine minima) of non-trivial models...

Currently displaying 221 – 240 of 475