Homogenization and ergodic theory
Let be a -action on an orientable -dimensional manifold. Assume has an isolated compact orbit and let be a small tubular neighborhood of it. By a change of variables, we can write and , where is some interval containing 0.In this work, we show that by a change of variables, outside , we can make invariant by transformations of the type , where and . As a corollary one cas describe completely the dynamics of in .
The aim of this paper is to study the steady states of the mathematical models with delay kernels which describe pathogen-immune dynamics of infectious diseases. In the study of mathematical models of infectious diseases it is important to predict whether the infection disappears or the pathogens persist. The delay kernel is described by the memory function that reflects the influence of the past density of pathogen in the blood and it is given by a nonnegative bounded and normated function k defined...
A four-dimensional hyperchaotic Lü system with multiple time-delay controllers is considered in this paper. Based on the theory of Hopf bifurcation in delay system, we obtain a simple relationship between the parameters when the system has a periodic solution. Numerical simulations show that the assumption is a rational condition, choosing parameter in the determined region can control hyperchaotic Lü system well, the chaotic state is transformed to the periodic orbit. Finally, we consider the differences...