The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 321 –
340 of
1043
We consider the boundary value problem
where , are continuous functions. The case when was studied in 2018 by Guendouz et al. Using the fixed-point theory on cones they established the existence of positive solutions. Here, by the method developed by ourselves very recently, we establish the existence, uniqueness and positivity of the solution under easily verified conditions and propose an iterative method for finding the solution. Some examples demonstrate the validity of the obtained theoretical...
By using Mawhin’s continuation theorem, we provide some sufficient conditions for the existence of solution for a class of high order differential equations of the form
associated with the integral boundary conditions at resonance. The interesting point is that we shall deal with the case of nontrivial kernel of arbitrary dimension corresponding to high order differential operator which will cause some difficulties in constructing the generalized inverse operator.
In this paper, we consider the following boundary value problem
where and is a continuous function, , are respectively the left and right fractional Riemann–Liouville derivatives and we prove the existence of at least one solution for this problem.
In this paper a fixed point theorem due to Covitz and Nadler for contraction multivalued maps, and the Schaefer’s theorem combined with a selection theorem due to Bressan and Colombo for lower semicontinuous multivalued operators with decomposables values, are used to investigate the existence of solutions for boundary value problems of fourth-order differential inclusions.
This paper presents existence results for initial and boundary value problems for nonlinear differential equations in Banach spaces.
This paper presents several sufficient conditions for the existence of at least one classical solution to impulsive fractional differential equations with a -Laplacian and Dirichlet boundary conditions. Our technical approach is based on variational methods. Some recent results are extended and improved. Moreover, a concrete example of an application is presented.
In this article, we study the existence of solutions to systems of conformable fractional differential equations with periodic boundary value or initial value conditions. where the right member of the system is -carathéodory function. We employ the method of solution-tube and Schauder’s fixed-point theorem.
In this paper, we study ϕ-Laplacian problems for differential inclusions with Dirichlet boundary conditions. We prove the existence of solutions under both convexity and nonconvexity conditions on the multi-valued right-hand side. The nonlinearity satisfies either a Nagumo-type growth condition or an integrably boundedness one. The proofs rely on the Bonhnenblust-Karlin fixed point theorem and the Bressan-Colombo selection theorem respectively. Two applications to a problem from control theory are...
In this paper we consider the existence, multiplicity, and nonexistence of positive solutions to fractional differential equation with integral boundary conditions. Our analysis relies on the fixed point index.
This paper treats the question of the existence of solutions of a fourth order boundary value problem having the following form:
, 0 < t < 1,
x(0) = x’(0) = 0, x”(1) = 0, .
Boundary value problems of very similar type are also considered. It is assumed that f is a function from the space C([0,1]×ℝ²,ℝ). The main tool used in the proof is the Leray-Schauder nonlinear alternative.
We develop the existence theory for sequential fractional differential equations involving Liouville-Caputo fractional derivative equipped with anti-periodic type (non-separated) and nonlocal integral boundary conditions. Several existence criteria depending on the nonlinearity involved in the problems are presented by means of a variety of tools of the fixed point theory. The applicability of the results is shown with the aid of examples. Our results are not only new in the given configuration...
Currently displaying 321 –
340 of
1043