The search session has expired. Please query the service again.

Displaying 2001 – 2020 of 17524

Showing per page

Around certain critical cases in stability studies in hydraulic engineering

Vladimir Răsvan (2023)

Archivum Mathematicum

It is considered the mathematical model of a benchmark hydroelectric power plant containing a water reservoir (lake), two water conduits (the tunnel and the turbine penstock), the surge tank and the hydraulic turbine; all distributed (Darcy-Weisbach) and local hydraulic losses are neglected,the only energy dissipator remains the throttling of the surge tank. Exponential stability would require asymptotic stability of the difference operator associated to the model. However in this case this stability...

Around the bounded L 2 curvature conjecture in general relativity

Sergiu Klainerman, Igor Rodnianski, Jeremie Szeftel (2008)

Journées Équations aux dérivées partielles

We report on recent progress obtained on the construction and control of a parametrix to the homogeneous wave equation g φ = 0 , where is a rough metric satisfying the Einstein vacuum equations. Controlling such a parametrix as well as its error term when one only assumes L 2 bounds on the curvature tensor R of is a major step towards the proof of the bounded L 2 curvature conjecture.

Asymmetric heteroclinic double layers

Michelle Schatzman (2002)

ESAIM: Control, Optimisation and Calculus of Variations

Let W be a non-negative function of class C 3 from 2 to , which vanishes exactly at two points 𝐚 and 𝐛 . Let S 1 ( 𝐚 , 𝐛 ) be the set of functions of a real variable which tend to 𝐚 at - and to 𝐛 at + and whose one dimensional energy E 1 ( v ) = W ( v ) + | v ' | 2 / 2 d x is finite. Assume that there exist two isolated minimizers z + and z - of the energy E 1 over S 1 ( 𝐚 , 𝐛 ) . Under a mild coercivity condition on the potential W and a generic spectral condition on the linearization of the one-dimensional Euler–Lagrange operator at z + and z - , it is possible to prove...

Asymmetric heteroclinic double layers

Michelle Schatzman (2010)

ESAIM: Control, Optimisation and Calculus of Variations

Let W be a non-negative function of class C3 from 2 to , which vanishes exactly at two points a and b. Let S1(a, b) be the set of functions of a real variable which tend to a at -∞ and to b at +∞ and whose one dimensional energy E 1 ( v ) = W ( v ) + | v ' | 2 / 2 x is finite. Assume that there exist two isolated minimizers z+ and z- of the energy E1 over S1(a, b). Under a mild coercivity condition on the potential W and a generic spectral condition on the linearization of the one-dimensional Euler–Lagrange operator at z+ and...

Asymptotic analysis and control of a hybrid system composed by two vibrating strings connected by a point mass

C. Castro (2010)

ESAIM: Control, Optimisation and Calculus of Variations

We consider a hybrid, one-dimensional, linear system consisting in two flexible strings connected by a point mass. It is known that this system presents two interesting features. First, it is well posed in an asymmetric space in which solutions have one more degree of regularity to one side of the point mass. Second, that the spectral gap vanishes asymptotically. We prove that the first property is a consequence of the second one. We also consider a system in which the point mass is replaced...

Asymptotic analysis and sign-changing bubble towers for Lane–Emden problems

Francesca De Marchis, Isabella Ianni, Filomena Pacella (2015)

Journal of the European Mathematical Society

We consider the semilinear Lane–Emden problem where p > 1 and Ω is a smooth bounded domain of 2 . The aim of the paper is to analyze the asymptotic behavior of sign changing solutions of ( p ) , as p + . Among other results we show, under some symmetry assumptions on Ω , that the positive and negative parts of a family of symmetric solutions concentrate at the same point, as p + , and the limit profile looks like a tower of two bubbles given by a superposition of a regular and a singular solution of the Liouville...

Asymptotic analysis for a nonlinear parabolic equation on

Eva Fašangová (1998)

Commentationes Mathematicae Universitatis Carolinae

We show that nonnegative solutions of u t - u x x + f ( u ) = 0 , x , t > 0 , u = α u ¯ , x , t = 0 , supp u ¯ compact either converge to zero, blow up in L 2 -norm, or converge to the ground state when t , where the latter case is a threshold phenomenon when α > 0 varies. The proof is based on the fact that any bounded trajectory converges to a stationary solution. The function f is typically nonlinear but has a sublinear growth at infinity. We also show that for superlinear f it can happen that solutions converge to zero for any α > 0 , provided supp u ¯ is sufficiently small.

Asymptotic analysis for the Ginzburg-Landau equations

Tristan Rivière (1999)

Bollettino dell'Unione Matematica Italiana

Questo lavoro costituisce un survey sui problemi di limite asintotico per le soluzioni delle equazioni di Ginzburg-Landau in dimensione due. Vengono presentati essenzialmente i risultati di [BBH] e [BR] sulla formazione ed il comportamento asintotico dei vortici in un dominio bidimensionale nel caso fortemente repulsivo (large K limit).

Currently displaying 2001 – 2020 of 17524