Gluing approximate solutions of minimum type on the Nehari manifold.
This paper is concerned with the numerical approximation of Cauchy problems for one-dimensional nonconservative hyperbolic systems. The theory developed by Dal Maso et al. [J. Math. Pures Appl.74 (1995) 483–548] is used in order to define the weak solutions of the system: an interpretation of the nonconservative products as Borel measures is given, based on the choice of a family of paths drawn in the phase space. Even if the family of paths can be chosen arbitrarily, it is natural to require this...
The integration to steady state of many initial value ODEs and PDEs using the forward Euler method can alternatively be considered as gradient descent for an associated minimization problem. Greedy algorithms such as steepest descent for determining the step size are as slow to reach steady state as is forward Euler integration with the best uniform step size. But other, much faster methods using bolder step size selection exist. Various alternatives are investigated from both theoretical and practical...
Let be a complete noncompact Riemannian manifold. We consider gradient estimates on positive solutions to the following nonlinear equation in , where , are two real constants and , is a smooth real valued function on and . When is finite and the -Bakry-Emery Ricci tensor is bounded from below, we obtain a gradient estimate for positive solutions of the above equation. Moreover, under the assumption that -Bakry-Emery Ricci tensor is bounded from below and is bounded from above,...
Let be a system of vector fields satisfying the Hörmander condition. We prove local regularity for the gradient of a solution of the following strongly elliptic system where are bounded functions and belong to Vanishing Mean Oscillation space.
We prove gradient estimates for hypersurfaces in the hyperbolic space Hn+1, expanding by negative powers of a certain class of homogeneous curvature functions F. We obtain optimal gradient estimates for hypersurfaces evolving by certain powers p > 1 of F-1 and smooth convergence of the properly rescaled hypersurfaces. In particular, the full convergence result holds for the inverse Gauss curvature flow of surfaces without any further pinching condition besides convexity of the initial hypersurface....
Under some assumptions on the function p(x), we obtain global gradient estimates for weak solutions of the p(x)-Laplacian type equation in .
We study, with purely analytic tools, existence, uniqueness and gradient estimates of the solutions to the Neumann problems associated with a second order elliptic operator with unbounded coefficients in spaces of continuous functions in an unbounded open set Ω in .
In this paper, we consider gradient estimates on complete noncompact Riemannian manifolds for the following general heat equation where is a constant and is a differentiable function defined on . We suppose that the Bakry-Émery curvature and the -dimensional Bakry-Émery curvature are bounded from below, respectively. Then we obtain the gradient estimate of Li-Yau type for the above general heat equation. Our results generalize the work of Huang-Ma ([4]) and Y. Li ([6]), recently.
This paper addresses the Cauchy problem for the gradient flow equation in a Hilbert space
We introduce a new transport distance between probability measures on that is built from a Lévy jump kernel. It is defined via a non-local variant of the Benamou–Brenier formula. We study geometric and topological properties of this distance, in particular we prove existence of geodesics. For translation invariant jump kernels we identify the semigroup generated by the associated non-local operator as the gradient flow of the relative entropy w.r.t. the new distance and show that the entropy is...
In this paper we summarize some of the main results of a forthcoming book on this topic, where we examine in detail the theory of curves of maximal slope in a general metric setting, following some ideas introduced in [11, 5], and study in detail the case of the Wasserstein space of probability measures. In the first part we derive new general conditions ensuring convergence of the implicit time discretization scheme to a curve of maximal slope, the uniqueness, and the error estimates. In the second...