Displaying 421 – 440 of 479

Showing per page

Gradient descent and fast artificial time integration

Uri M. Ascher, Kees van den Doel, Hui Huang, Benar F. Svaiter (2009)

ESAIM: Mathematical Modelling and Numerical Analysis

The integration to steady state of many initial value ODEs and PDEs using the forward Euler method can alternatively be considered as gradient descent for an associated minimization problem. Greedy algorithms such as steepest descent for determining the step size are as slow to reach steady state as is forward Euler integration with the best uniform step size. But other, much faster methods using bolder step size selection exist. Various alternatives are investigated from both theoretical and practical...

Gradient estimates for a nonlinear equation Δ f u + c u - α = 0 on complete noncompact manifolds

Jing Zhang, Bingqing Ma (2011)

Communications in Mathematics

Let ( M , g ) be a complete noncompact Riemannian manifold. We consider gradient estimates on positive solutions to the following nonlinear equation Δ f u + c u - α = 0 in M , where α , c are two real constants and α > 0 , f is a smooth real valued function on M and Δ f = Δ - f . When N is finite and the N -Bakry-Emery Ricci tensor is bounded from below, we obtain a gradient estimate for positive solutions of the above equation. Moreover, under the assumption that -Bakry-Emery Ricci tensor is bounded from below and | f | is bounded from above,...

Gradient estimates for elliptic systems in Carnot-Carathéodory spaces

Giuseppe Di Fazio, Maria Stella Fanciullo (2002)

Commentationes Mathematicae Universitatis Carolinae

Let X = ( X 1 , X 2 , , X q ) be a system of vector fields satisfying the Hörmander condition. We prove L X 2 , λ local regularity for the gradient X u of a solution of the following strongly elliptic system - X α * ( a i j α β ( x ) X β u j ) = g i - X α * f i α ( x ) i = 1 , 2 , , N , where a i j α β ( x ) are bounded functions and belong to Vanishing Mean Oscillation space.

Gradient estimates for inverse curvature flows in hyperbolic space

Julian Scheuer (2015)

Geometric Flows

We prove gradient estimates for hypersurfaces in the hyperbolic space Hn+1, expanding by negative powers of a certain class of homogeneous curvature functions F. We obtain optimal gradient estimates for hypersurfaces evolving by certain powers p > 1 of F-1 and smooth convergence of the properly rescaled hypersurfaces. In particular, the full convergence result holds for the inverse Gauss curvature flow of surfaces without any further pinching condition besides convexity of the initial hypersurface....

Gradient estimates in parabolic problems with unbounded coefficients

M. Bertoldi, S. Fornaro (2004)

Studia Mathematica

We study, with purely analytic tools, existence, uniqueness and gradient estimates of the solutions to the Neumann problems associated with a second order elliptic operator with unbounded coefficients in spaces of continuous functions in an unbounded open set Ω in N .

Gradient estimates of Li Yau type for a general heat equation on Riemannian manifolds

Nguyen Ngoc Khanh (2016)

Archivum Mathematicum

In this paper, we consider gradient estimates on complete noncompact Riemannian manifolds ( M , g ) for the following general heat equation u t = Δ V u + a u log u + b u where a is a constant and b is a differentiable function defined on M × [ 0 , ) . We suppose that the Bakry-Émery curvature and the N -dimensional Bakry-Émery curvature are bounded from below, respectively. Then we obtain the gradient estimate of Li-Yau type for the above general heat equation. Our results generalize the work of Huang-Ma ([4]) and Y. Li ([6]), recently.

Gradient flows of the entropy for jump processes

Matthias Erbar (2014)

Annales de l'I.H.P. Probabilités et statistiques

We introduce a new transport distance between probability measures on d that is built from a Lévy jump kernel. It is defined via a non-local variant of the Benamou–Brenier formula. We study geometric and topological properties of this distance, in particular we prove existence of geodesics. For translation invariant jump kernels we identify the semigroup generated by the associated non-local operator as the gradient flow of the relative entropy w.r.t. the new distance and show that the entropy is...

Gradient flows with metric and differentiable structures, and applications to the Wasserstein space

Luigi Ambrosio, Nicola Gigli, Giuseppe Savaré (2004)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

In this paper we summarize some of the main results of a forthcoming book on this topic, where we examine in detail the theory of curves of maximal slope in a general metric setting, following some ideas introduced in [11, 5], and study in detail the case of the Wasserstein space of probability measures. In the first part we derive new general conditions ensuring convergence of the implicit time discretization scheme to a curve of maximal slope, the uniqueness, and the error estimates. In the second...

Gradient potential estimates

Giuseppe Mingione (2011)

Journal of the European Mathematical Society

Pointwise gradient bounds via Riesz potentials like those available for the Poisson equation actually hold for general quasilinear equations.

Gradient regularity for minimizers of functionals under p - q subquadratic growth

F. Leonetti, E. Mascolo, F. Siepe (2001)

Bollettino dell'Unione Matematica Italiana

Si prova la maggior sommabilità del gradiente dei minimi locali di funzionali integrali della forma Ω f D u d x , dove f soddisfa l'ipotesi di crescita ξ p - c 1 f ξ c 1 + ξ q , con 1 < p < q 2 . L'integrando f è C 2 e D D f ha crescita p - 2 dal basso e q - 2 dall'alto.

Gradient regularity via rearrangements for p -Laplacian type elliptic boundary value problems

Andrea Cianchi, Vladimir G. Maz'ya (2014)

Journal of the European Mathematical Society

A sharp estimate for the decreasing rearrangement of the length of the gradient of solutions to a class of nonlinear Dirichlet and Neumann elliptic boundary value problems is established under weak regularity assumptions on the domain. As a consequence, the problem of gradient bounds in norms depending on global integrability properties is reduced to one-dimensional Hardy-type inequalities. Applications to gradient estimates in Lebesgue, Lorentz, Zygmund, and Orlicz spaces are presented.

Currently displaying 421 – 440 of 479