Displaying 441 – 460 of 479

Showing per page

Gradient theory for plasticity via homogenization of discrete dislocations

Adriana Garroni, Giovanni Leoni, Marcello Ponsiglione (2010)

Journal of the European Mathematical Society

We deduce a macroscopic strain gradient theory for plasticity from a model of discrete dislocations. We restrict our analysis to the case of a cylindrical symmetry for the crystal under study, so that the mathematical formulation will involve a two-dimensional variational problem. The dislocations are introduced as point topological defects of the strain fields, for which we compute the elastic energy stored outside the so-called core region. We show that the Γ -limit of this energy (suitably rescaled),...

Graphical Processing Unit accelerated Poisson equation solver and its application for calculation of single ion potential in ion-channels

Nikolay A. Simakov, Maria G. Kurnikova (2013)

Molecular Based Mathematical Biology

Poisson and Poisson-Boltzmann equations (PE and PBE) are widely used in molecular modeling to estimate the electrostatic contribution to the free energy of a system. In such applications, PE often needs to be solved multiple times for a large number of system configurations. This can rapidly become a highly demanding computational task. To accelerate such calculations we implemented a graphical processing unit (GPU) PE solver described in this work. The GPU solver performance is compared to that...

Gravimetric quasigeoid in Slovakia by the finite element method

Zuzana Fašková, Karol Mikula, Róbert Čunderlík, Juraj Janák, Michal Šprlák (2007)

Kybernetika

The paper presents the solution to the geodetic boundary value problem by the finite element method in area of Slovak Republic. Generally, we have made two numerical experiments. In the first one, Neumann BC in the form of gravity disturbances generated from EGM-96 is used and the solution is verified by the quasigeoidal heights generated directly from EGM-96. In the second one, Neumann BC is computed from gravity measurements and the solution is compared to the quasigeoidal heights obtained by...

Green’s function pointwise estimates for the modified Lax–Friedrichs scheme

Pauline Godillon (2003)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

The aim of this paper is to find estimates of the Green’s function of stationary discrete shock profiles and discrete boundary layers of the modified Lax–Friedrichs numerical scheme, by using techniques developed by Zumbrun and Howard [27] in the continuous viscous setting.

Green's function pointwise estimates for the modified Lax–Friedrichs scheme

Pauline Godillon (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

The aim of this paper is to find estimates of the Green's function of stationary discrete shock profiles and discrete boundary layers of the modified Lax–Friedrichs numerical scheme, by using techniques developed by Zumbrun and Howard [CITE] in the continuous viscous setting.

Green's theorem from the viewpoint of applications

Alexander Ženíšek (1999)

Applications of Mathematics

Making use of a line integral defined without use of the partition of unity, Green’s theorem is proved in the case of two-dimensional domains with a Lipschitz-continuous boundary for functions belonging to the Sobolev spaces W 1 , p ( ) H 1 , p ( ) ( 1 p ...

Grid adjustment based on a posteriori error estimators

Karel Segeth (1993)

Applications of Mathematics

The adjustment of one-dimensional space grid for a parabolic partial differential equation solved by the finite element method of lines is considered in the paper. In particular, the approach based on a posteriori error indicators and error estimators is studied. A statement on the rate of convergence of the approximation of error by estimator to the error in the case of a system of parabolic equations is presented.

Ground States of Nonlinear Schrödinger Equations with potentials vanishing at infinity

Antonio Ambrosetti, Veronica Felli, Andrea Malchiodi (2004)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

In this preliminary Note we outline the results of the forthcoming paper [2] dealing with a class on nonlinear Schrödinger equations with potentials vanishing at infinity. Working in weighted Sobolev spaces, the existence of a ground state is proved. Furthermore, the behaviour of such a solution, as the Planck constant tends to zero (semiclassical limit), is studied proving that it concentrates at a point.

Currently displaying 441 – 460 of 479