The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Displaying 741 –
760 of
876
A semidiscretization in time of a fourth order nonlinear parabolic system in several space dimensions arising in quantum semiconductor modelling is studied. The system is numerically treated by introducing an additional nonlinear potential. Exploiting the stability of the discretization, convergence is shown in the multi-dimensional case. Under some assumptions on the regularity of the solution, the rate of convergence proves to be optimal.
A semidiscretization in time of a fourth order nonlinear parabolic system in several space dimensions arising in quantum semiconductor modelling is studied. The system is numerically treated by introducing an additional nonlinear potential. Exploiting the stability of the discretization, convergence is shown in the multi-dimensional case. Under some assumptions on the regularity of the solution, the rate of convergence proves to be optimal.
In this paper we present a few results on convergence for the prime integrals equations connected with the bounce problem. This approach allows both to prove uniqueness for the one-dimensional bounce problem for almost all permissible Cauchy data (see also [6]) and to deepen previous results (see [3], [5], [7]).
This paper reviews popular acceleration techniques to converge the non-linear self-consistent field equations appearing in quantum chemistry calculations with localized basis sets. The different methodologies, as well as their advantages and limitations are discussed within the same framework. Several illustrative examples of calculations are presented. This paper attempts to describe recent achievements and remaining challenges in this field.
We consider strongly coupled competitive elliptic systems that arise in the study of two-component Bose-Einstein condensates. As the coupling parameter tends to infinity, solutions that remain uniformly bounded are known to converge to a segregated limiting profile, with the difference of its components satisfying a limit scalar PDE. In the case of radial symmetry, under natural non-degeneracy assumptions on a solution of the limit problem, we establish by a perturbation argument its persistence...
We show that a harmonic function which vanishes continuously on an open set of the boundary of a convex domain cannot have a normal derivative which vanishes on a subset of positive surface measure. We also prove a similar result for caloric functions vanishing on the lateral boundary of a convex cylinder.
Geometrical techniques are employed to prove a global existence theorem for -solutions to underdetermined systems of non-linear order partial differential equations, , which satisfy certain convexity conditions. The solutions are not unique, but satisfy given approximations on lower order derivatives. The main result, which includes the relative case generalizes the work of M. Gromov on non-linear first order systems.
We study solutions of first order partial differential relations , where
is a Lipschitz map and is a bounded set in matrices, and extend Gromov’s theory of convex integration in two ways. First, we allow for additional
constraints on the minors of and second we replace Gromov’s −convex hull by the (functional) rank-one convex hull. The latter can be much larger than the former and this has important consequences for the existence of ‘wild’ solutions to elliptic systems. Our work was originally...
The least Steklov eigenvalue d1 for the biharmonic operator in bounded domains gives a bound for the positivity preserving property for the hinged plate problem, appears as a norm of a suitable trace operator, and gives the optimal constant to estimate the L2-norm of harmonic functions. These applications suggest to address the problem of minimizing d1 in suitable classes of domains. We survey the existing results and conjectures about this topic; in particular, the existence of a convex domain...
We consider solutions to a free boundary problem for the heat equation, describing the propagation of flames. Suppose there is a bounded domain Ω ⊂ QT = Rn x (0,T) for some T > 0 and a function u > 0 in Ω such thatut = Δu, in Ω,u = 0 and |∇u| = 1, on Γ := ∂Ω ∩ QT,u(·,0) = u0, on Ω0,where Ω0 is a given domain in Rn and u0 is a positive and continuous function in Ω0, vanishing on ∂Ω0. If Ω0 is convex and u0 is concave in Ω0, then we show that (u,Ω) is unique and the time sections...
We study the evolution of a closed, convex hypersurface in in direction of its normal vector, where the speed equals a power of the mean curvature. We show that if initially the ratio of the biggest and smallest principal curvatures at every point is close enough to , depending only on and , then this is maintained under the flow. As a consequence we obtain that, when rescaling appropriately as the flow contracts to a point, the evolving surfaces converge to the unit sphere.
A formal solution of a nonlinear equation P(D)u = g(u) in 2 variables is constructed using the Laplace transformation and a convolution equation. We assume some conditions on the characteristic set Char P.
Currently displaying 741 –
760 of
876